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Abstract. We propose a comparative study of four algorithms dedicated to the lexicographic
unranking of combinations. Three of them are algorithms from the literature. We analyze their
time complexity in average, with a uniform presentation, and describe their strengths and weak-
nesses. Furthermore we also introduce a new algorithm using a new strategy of computations
inside the classical factorial numeral system (or factoradics). Then after proposing improvements
for all implementations we present a detailed complexity analysis whose results are validated by
an experimental analysis for actual use of combination unranking. Interestingly we show that
even if the algorithms are based on different strategies all are doing very similar computations.
Finally successfully apply our approach to the unranking of other classical combinatorial objects.
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1. Introduction

One of the most fundamental combinatorial object is called combination. It consists of a
selection of items from a collection. In many enumerating problems it appears either as the main
combinatorial structure, or as a core fundamental block because of its simplicity and counting
characteristics.

In the 60s while resolving some optimization problem about scheduling Lehmer rediscovered
an important property linking natural numbers with a mixed radius numeral system based on
combinations. This relation gave him the possibility to exhibit some greedy approach for a ranking
algorithm that transforms (bijectively) a combination into an integer. This numeral system is
now commonly called “combinatorial numbers system” or “combinadics”. It is often used for the
reverse of Lehmer’s problem: generating the u-th combination (for a given order on the set of
combinations). For efficiency reason this approach can be substituted to exhaustive generation
once the latter is not possible anymore due to the combinatorial explosion of the number of
objects when their size increases. In the context of combination, the explosion appears quickly:
we recall

(
2n
n

)
∼ (2πn)

− 1
2 4n. This generation strategy of a single element is classically called an

unranking method. It is today often used as a basic brick in scheduling problems [21] but also e.g.
in software testing [17].

In order to unrank elements one must first define an order over these elements. The one that is
usually used is the lexicographic. The lexicographic order is humanly easy to handle, and thus has
been extensively studied. But, as Ruskey [20, p. 59] mentions, lexicographic generation is usually
not the most efficient, thus a particular care must be taken while unranking for this order.

The classical approach for the construction of combinatorial structures presenting a recursive
decomposition schema consists in taking advantage of this decomposition in order to build a bigger
object from a smaller one. The method has been extensively detailed in the famous book of Nijen-
huis and Wilf [18]. There, the authors are interested in an exhaustive generation and a uniform
random sampling approach, but some ideas about the decomposition schema are also applicable in
the context of unranking. The method has been then applied generically to decomposable objects
in the sense of analytic combinatorics, first in the context of recursive generation [12], and then
in the context of unranking approaches [15].

Aside such generic approaches there exist several ad hoc algorithms. The complexity analysis
of these algorithms have been settled to be linear in n in average over all possible combinations
when k is ranging from 0 to n. But to the best of our knowledge these complexity analyses are
only computing the number of calls to the function that computes a binomial coefficient while
having first all the possible coefficients pre-computed and stored (this pre-computation step is not
included in the complexity analysis). From this fact, two questions arise. First, is this complexity
analysis relevant? That is: does it reflect the actual runtime of the algorithms and can we afford
the pre-computations of many binomial coefficients? And second, among the different existing
algorithms, which one performs best in practice?

Using exact computations, it is actually not a problem to deal with combinations over sets of
several thousands of objects. In this context using a table filled with all possible binomial coeffi-
cients that might be needed is not practical. Most classical computer algebra systems (CAS) can
unrank combinations in a reasonable time though, which suggests that there are better approaches.
In the following Table 1 we present some of our experimental results. We will detail everything
in Section 4 but as a foretaste here we give some key points. In Section 2 we introduce a new
unranking algorithm. The first column gives the typical run time of our C implementation of this
algorithm. In the other columns, we give a rough performance comparison of four different CAS.
For each one, we have compared the average run time in milliseconds to unrank a combination
first by using the native algorithm of the CAS (“their algo.”) and second by implementing our
new algorithm in the high-level programming language of the CAS. The high diversity of the time
used by the algorithms naturally militates in favor of providing a detailed analysis of the different
methods that are used in practice.
There is a special case for Sagemath: since the version 9.1 our algorithm has been implemented
(in Python 3) and is used as the native algorithm.
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Time in ms.

Implem.
Sample Our algo. Sagemath Maple Mathematica Matlab

in C v. 9.0 v. 9.2 v. 2020.0 v. 12.1.1.0 v. R2020b
their
algo.

new
algo.

their
algo.

our
algo.

their
algo.

our
algo.

their
algo.

our
algo.

n = 1, 000 0.05464 2.6045 2.9672 78.2 2.12 0.44176 4.3145 3996.6 3041.2
k = 100

n = 1, 000 0.06052 8.8903 2.4784 614 2.96 0.34608 3.9547 3520.6 3380.0
k = 500

n = 3, 000 0.17496 15.8968 8.7929 1180 13.2 5.9131 11.823 11846 9315.2
k = 300

n = 3, 000 0.27524 96.3589 8.0500 6130 19.2 4.9624 13.067 11087 9879.4
k = 1, 500

n = 10, 000 1.2554 191.03 31.665 too long 65.1 21.906 39.935 too long too long
k = 1, 000

n = 10, 000 2.3849 2245.6 29.027 too long 97.9 29.916 46.452 too long too long
k = 5, 000

Table 1. Average time (in ms.) for the unranking of a combination among n, k

Along the paper, we represent combinations as follows.

Definition 1. Let n and k be two integers with 0 ≤ k ≤ n. We represent a combination of k
elements among n elements denoted by {0, 1, . . . , n− 1} as a finite sequence containing k distinct
elements increasingly sorted from left to right.

For example, let n and k be respectively 5 and 3. The finite sequences (0, 1, 2) and (0, 2, 4)
are combinations of k among n, but (0, 2, 1) and (0, 1, 2, 3) are not. There are another possible
representations, notably by using a 2-letters alphabet, but we stick to the one given in Definition 1
throughout this paper.

There are several orders for comparing combinations. In the following we restrict our attention
to orders comparing combinations of the same length, i.e. the same number of elements.

Definition 2. Let A = (a0, a1, . . . , ak−1) and B = (b0, b1, . . . , bk−1) be two distinct combinations
of k elements among n.

• In the lexicographic order, we say that A is smaller than B if and only if both combinations
have the same prefix (eventually empty) such that (a0, . . . , ap−1) = (b0, . . . , bp−1) and if
in addition ap < bp.

• In the co-lexicographic order, we say that A is smaller than B if and only if the finite
sequence (ak−1, . . . , a0) is smaller than (bk−1, . . . , b0) for the lexicographic order.

• An order being given such that A is smaller than B, then, for the reverse order, B is
smaller that A.

Definition 3. Let 0 ≤ k ≤ n be two integers and let A be a combination of k elements among n.
For a given order, the rank u of A belongs to {0, 1, . . .

(
n
k

)
− 1} and is such that A is the u-th

smallest combination.

With these definitions in mind, we can enter the core of the paper organized as follows. We first
give the presentation and a first complexity analysis of our new algorithm in Section 2. Section 3
is dedicated to the survey of three classical algorithms. The first one is the algorithm based on the
so-called recursive method, solving the lexicographic combination unranking problem. The two
others algorithms are based on combinadics that correspond to a specific numeral system. It seems
that it is the first time both are compared and the reason why one is better is explained. We also
propose a new method for their analysis based on the now classical generating function approach.



4 A. GENITRINI AND M. PÉPIN

Obviously we thus reprove their average complexity results but with more details. We then,
in Section 4 compare their efficiency in some experiments and recall a classical way to improve
such kind of combinatorial algorithms and thus apply it to the first codes we have presented.
Surprisingly, once the improvements have been implemented in all algorithms, we observe deep
similarities in the computations of all algorithms conducted during the unranking. Finally we
extend our approach to solve the problem of unranking structures enumerated by multinomial
coefficients and also objects counted by the k-permutations of n (also called arrangements).

This article is a long and extended version of the unpublished paper [7]. The implementation
and the exhaustive material used for repeating the experiments are all available at http://github.
com/Kerl13/combination_unranking.

2. Unranking through factoradics: a new strategy

The classical methods to unrank combination are relying on the combinatorial number system
introduced in 1887, by E. Pascal [19] and later by D. H. Lehmer (detailed in the book [1, p.
27]). We survey these classical algorithms in the Section 3.2. But here we present a new strategy
based on another number system that has never been used, to the best of our knowledge, for
the unranking combinations: factoradics. The factorial number system, or factoradics, is a mixed
radix numeral system in which the representation of integers relies on the use of factorial numbers.

Fact 4. For all positive integers u, we define n as the unique integer satisfying (n− 1)! ≤ u < n!.
Then there exists a unique sequence of integers (f`)`∈{0,...,n−1}, with 0 ≤ f` ≤ `, for all ` such
that:

u = f0 · 0! + f1 · 1! + · · ·+ fn−2 · (n− 2)! + fn−1 · (n− 1)!

The finite sequence (f0, f1, . . . , fn−1) is called the factoradic decomposition of u (note that f0 = 0
for all u).

Take the number u = 2021 as an example, we obtain the following decomposition: 2021 =
0 · 0! + 1 · 1! + 2 · 2! + 0 · 3! + 4 · 4! + 4 · 5! + 2 · 6!, thus its factoradic is (0, 1, 2, 0, 4, 4, 2).

Definition 5. Let n be a positive integer. A permutation of size n is an ordering of the elements
from the set {0, 1, . . . , n− 1}.

We represent a permutation of size n as a finite sequence of length n indicating the order of its
elements. For example the sequence (2, 4, 0, 3, 1) is a permutation of size 5.

The factorial number system is particularly suitable to define a one-to-one correspondence
between integers and permutations and thus can be used as an unranking method for permuta-
tions. The algorithm implemented in the function UnrankingPermutation in Algorithm 1 is a
straightforward adaptation of the Fisher-Yates random sampler for permutations [10].

Fact 6. For all 0 ≤ u < n!, UnrankingPermutation(n, u) returns the u-th permutation in
lexicographic order among the n! permutations of n elements.

Algorithm 1 Unranking a permutation

1: function UnrankingPermutation(n, u)
2: F ← factoradic(u)
3: while length(F ) < n do
4: append(F, 0)

5: return Extract(F, n, n)

1: function Extract(F, n, k)
2: P ← [0, 1, . . . , n− 1]
3: L← [0, . . . , 0] . k components
4: for i from 0 to k − 1 do
5: L[i]← P [F [n− 1− i]]
6: remove(P, F [n− 1− i])
7: return L

factoradic(u): computes the factoradic of u;
length(F ): computes the number of components in F ;
append(F, i): appends the element i at the end of F ;
remove(F, i): removes from F the element at index i.

http://github.com/Kerl13/combination_unranking
http://github.com/Kerl13/combination_unranking
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Since the factoradic (with 8 components) of 2021 is (0, 1, 2, 0, 4, 4, 2, 0), the permutation (of
size 8) of rank 2021 is (0, 3, 6, 7, 1, 5, 4, 2). To reach this permutation, we read the factoradic from
right to left, and extract iteratively from the list (0, 1, . . . , n − 1) the element whose index is the
coefficient read in the factoradic. This goes on until the list is empty and we reach the leftmost
component of the factoradic. Thus, in our example we start by extracting the element of index 0,
which is 0. Then the list P becomes (1, 2, . . . , 7) and we extract the element of index 2, which is
3. Then P becomes (1, 2, 4, 5, 6, 7) and we extract the 4-th element which is 6, and so on.

Note that for the sake of clarity we presented the function Extract using a list for P , but a
better data structure must be used in order to achieve good performance. Good candidates are
dynamic balanced trees as presented in [3], or multisets with elements of weight 1 or 0 as presented
in the appendix of [2], since both provide logarithmic access and removal. Unfortunately it seems
that there is no algorithm based on some swap operation giving an in-place shuffle to unrank
permutation in the lexicographic order, put differently: Durstenfeld’s algorithm [8] cannot be
easily adapted for the lexicographic order.

We now turn to the unranking of a combination through factoradics. The basic ideas driving
our algorithm are the following:

(1) we define a bijection between the combinations of k elements among n and a subset of the
permutations of n elements;

(2) we transform the combination rank u into the rank u′ of the appropriate permutation;
(3) we build (the prefix of) the permutation of rank u′ by using Algorithm 1.

Definition 7. Let n and k be two integers with 0 ≤ k ≤ n. We define Pn,k as the application which
maps the combination (`0, `1, . . . , `k−1) to the size-n permutation (`0, `1, . . . , `k−1, dk, . . . , dn−1)
where the integers di are such that dk < dk+1 < · · · < dn−1 and {`0, . . . , `k−1, dk, . . . , dn−1} =
{0, 1, . . . , n− 1}.

Thus, by definition, for n = 5 and k = 3, the permutations associated to the combinations
(0, 1, 2) and (0, 2, 4) are respectively (0, 1, 2, 3, 4) and (0, 2, 4, 1, 3). Note that the application Pn,k
returns the smallest size-n permutation for the lexicographic order whose prefix is the given com-
bination.

Proposition 8. For all integers 0 ≤ k ≤ n, the application Pn,k is a bijection from the set of (n, k)
combinations to the set of size-n permutations whose prefix of length k and suffix of length n− k
are both increasingly sorted.

Remark that the permutation (of size 5) (0, 1, 2, 3, 4) is the permutation associated to combi-
nations (0, 1) and (0, 1, 2) by respectively P2,5 and P3,5. In fact, there are exactly 6 combinations
associated to the latter permutation, but for different values of k. The proof of Proposition 8 is
straightforward.

Fact 9. For any integers m ≥ 0, the number of sequences (fi)0≤i<n satisfying n − k ≥ fn−k ≥
fn−k+1 ≥ · · · ≥ fn−1 ≥ m is given by

(
n−m
k

)
.

In fact, we get the result using a cardinality argument: a sequence of integers of the form x0 =
0 ≤ x1 ≤ x2 ≤ · · · ≤ xk ≤ xk+1 = m corresponds to a weak composition (consider the differ-
ences xi+1 − xi) of the integer m into k + 1 terms. The number of such compositions is given
by
(
m+k
k

)
. Hence, the number of sequences matching the description of Fact 9 is given by

(
n−k+k

k

)
.

We now exhibit how to transform a combination rank into its corresponding permutation rank.

Lemma 10. For any given 0 ≤ k ≤ n, the factoradic decompositions of the ranks of the permuta-
tions obtained as the image by Pn,k of some combination of k elements among n are all the finite
sequences of the form (0, . . . , 0, fn−k, . . . , fn−1) with n− k ≥ fn−k ≥ fn−k+1 ≥ · · · ≥ fn−1 ≥ 0.

Proof. Let u be an integer whose factoradics is (0, . . . , 0, fn−k, . . . fn−1) as in the Lemma. Due to
the constraint n− k ≥ fn−k ≥ fn−k+1 ≥ · · · ≥ fn−1 ≥ 0, the permutation corresponding to u has
for prefix of length k the sequence (fn−1, fn−2 +1, fn−3 +2, . . . , fn−k+k−1) which is increasingly
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sorted. The rest of the permutation (the suffix of length n − k) corresponds to the increasing
sequence of elements that have not been taken yet. Thus the result corresponds to a combination
via Pn,k.

Fact 9 completes the proof. �

So in order to convert the combination rank u into its corresponding permutation rank u′, it is
sufficient to find the u-th sequence satisfying Lemma 10 in co-lexicographic order. This is presented
in Algorithm 2 where the RankConversion function implements the conversion from u to u′
and the UnrankingCombination function implements the whole unranking procedure.

The key to the rank conversion is also Fact 9 As a consequence, we get that the first
(
n−1
k−1
)
such

sequences (in col-lexicographic order) have fn−1 = 0 and that the
(
n−1
k

)
following have fn−1 ≥ 1.

Algorithm 2 Unranking a combination

1: function UnrankingCombination(n, k, u)
2: u′ ← RankConversion(n, k, u)
3: p← UnrankingPermutation(n, u′)
4: return the first k elements of p

1: function RankConversion(n, k, u)
2: F ← [0, . . . , 0] . n components in F
3: i← 0
4: m← 0
5: while i < k do
6: b← binomial(n− 1−m− i, k− 1− i)
7: if b > u then
8: F [n− 1− i]← m
9: i← i+ 1

10: else
11: u← u− b
12: m← m+ 1

13: . F is the factoradic decomposition
14: return composition(F )

binomial(n, k) computes the value of
(
n
k

)
;

composition(F ): computes the integer whose factoradic is F .

Once again we opted for a simple presentation here where the rank conversion and the unranking
part of the algorithm are clearly separated. There is much room for improvement here: for instance,
note that at the end of the function RankConversion a factoradic decomposition is transformed
into the integer it represents, but then at the beginning of UnrankingPermutation this integer
will be decomposed again in factoradics. In fact, instead of storing of storing m into F at line 8,
we could directly compute the i-th component of the combination as m + i by using the remark
at the beginning of the proof of Lemma 10. In Section 4.2 we provide a more efficient way to
implement the algorithm including this optimization among other things.

Proposition 11. The function UnrankingCombination(n, k, u) computes the u-th combination
of k elements among n in lexicographic order.

Proof. The algorithm, and thus its proof, relies heavily on Fact 9. The key to prove the correctness
of the RankConversion function is the following loop invariant:

• the values of fn−1−j for all 0 ≤ j < i have been computed and stored in F ;
• the value of fn−i−1 (which has not been determined yet, as we enter the loop) is at leastm;
• the variable u′ holds the rank of the sequence (fj)0≤j<n−i (note that j < i) among all

sequences satisfying the condition of Fact 9 with k = k − i and n = n− i.
With this invariant at hand, the combinatorial argument behind the condition u <

(
n−m−i−1
k−i−1

)
becomes more apparent: the binomial coefficient counts the number of such sequences ending
with m. Hence if u <

(
n−m−i−1
k−i−1

)
then fn−1−i = m and we move to the evaluation of the next

coefficient (fn−i−2), otherwise we try the next value of m. �
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The usual way to evaluate the efficiency of such algorithms is to count the number of times
the function binomial is called (see e.g. the book [20, p. 66] or the papers [5, 9]). During
the conversion from the rank of the combination to the one of the associated permutation, the
coefficients are obtained via trials (in the factoradic notation) for fn−1 to fn−k, remarking that
through our bijection Pn,k the latter sequence is weakly increasing. Thus the worst cases are
obtained when the value fn−k is as large as possible, that is n − k. Thus for such elements, the
number of calls to binomial is n.
For the average number of calls to the function binomial, unranking all combinations u when it
describes the whole range from 0 to

(
n
k

)
− 1, we introduce the following cumulative sequence.

Lemma 12. Let un,k be the cumulative numbers of calls to binomial while unranking all possible
combinations u from 0 to

(
n
k

)
− 1. The sequence satisfies: un,0 = 0 and un,n+i = 0 for all n and

i > 0, and otherwise

un,k =

(
n

k

)
+ un−1,k−1 + un−1,k.

In Table 2 you get the first values for un,k when n is less than 9. We obtain a sequence stored
under the reference OEIS A1277171. The bijection between both structures is direct, and thus we
have new information about this sequence in the following.

n
k 0 1 2 3 4 5 6 7 8

1 0 1
2 0 3 2
3 0 6 8 3
4 0 10 20 15 4
5 0 15 40 45 24 5
6 0 21 70 105 84 35 6
7 0 28 112 210 224 140 48 7
8 0 36 168 378 504 420 216 63 8

Table 2. First values of un,k for n = 1..8 and k = 0..n (Algorithm 2)

Proof. The recurrence can be observed by unrolling the first iteration of the while loop. In the first
iteration of the loop, a binomial coefficient b is always computed (regardless the value of k and n)
which accounts for the term

(
n
k

)
in the recurrence relation. Then, for all the ranks u such that u < b

we choose fn−1 = 0 and increment i, so that rest of the execution corresponds to unranking a
combination of k − 1 elements among n − 1. This is accounted by un−1,k−1. Conversely, for all
ranks u such that u ≥ b, the value of m is incremented and the rest of the execution corresponds
to unranking an combination of k elements among n− 1, which is accounted by un−1,k. �

We turn to bivariate generating function to encode the sequence (un,k). The reader can for
example refer to the two books of Flajolet and Sedgewick [13, 11] for a global presentation of such
method.

Theorem 13. Let U(z, y) be the generating functions associated to (un,k). Then

U(z, y) =
1

1− z − zy

(
1

1− z − zy
− 1

1− z

)
; thus

un,k =

(
n

k

)
k

k + 1
(n+ 1).

1Throughout this paper, a reference OEIS A· · · points to Sloane’s Online Encyclopedia of Integer Sequences
www.oeis.org.

https://oeis.org/A127717
www.oeis.org
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Proof. The first step of the proof consists in exhibiting the ordinary generating function associated
to U(z, y). In order to obtain a functional equation satisfied by U , we start from the result
presented in Lemma 12. The extreme cases are un,0 = 0 and un,n+i = 0 for all n and i > 0. And
the recursive equation is un,k =

(
n
k

)
+ un−1,k−1 + un−1,k.

We remark the constant
(
n
k

)
in the equation. We thus need the bivariate generating function

for binomial coefficient. Le us denote it by B(z, y), it is equal to

B(z, y) =
∑
n≥0

n∑
k=0

(
n

k

)
zn yk =

1

1− z − zy
.

In order to take into account the extreme cases, we must remove the terms corresponding to k = 0:

B̃(z, y) =
1

1− z − zy
− 1

1− z
.

By summing both sides of the recursive relation and by taking care of the extreme cases we get:∑
n≥1

n∑
k=1

un,kz
n yk = B̃(z, y) +

∑
n≥1

n∑
k=1

un−1,k−1z
n yk +

∑
n≥1

n∑
k=1

un−1,kz
n yk

U(z, y) = B̃(z, y) + z y U(z, y) + z U(z, y).

We thus deduce

U(z, y) =
1

1− z − zy

(
1

1− z − zy
− 1

1− z

)
.

The second step in the proof consists in extracting the coefficient un,k. We rewrite U(z, y) as:

U(z, y) =
1

1− z(1 + y)

(
1

1− z(1 + y)
− 1

1− z

)

=

∑
r≥0

zr(1 + y)
r

 ·
∑
r≥0

zr(1 + y)
r −

∑
r≥0

zr


=

∑
r≥0

zr(1 + y)
r

 ·
1− 1 +

∑
r≥1

zr ((1 + y)
r − 1)

 .

By extraction the coefficient in front of zn:

[zn]U(z, y) =

n−1∑
`=0

(1 + y)
`
(

(1 + y)
n−` − 1

)
=

n−1∑
`=0

(1 + y)
n − (1 + y)

`

= n(1 + y)
n − (1 + y)

n − 1

y
.

The latter result corresponds to the distribution of the costs when k varies from 0 to n. We can
then exactly extract the coefficient of zn yk:

[zn yk]U(z, y) = n ·
(
n

k

)
−
(

n

k + 1

)
=

(
n

k

)
k

k + 1
(n+ 1).

�

Corollary 14. In order to unrank a combination of k elements among n, the function UnrankingCombination(n, k, ·)
needs in average un,k/

(
n
k

)
calls to the function binomial. For n being large and k being of the

form αn for 0 < α < 1, the average number of calls is

un,k(
n
k

) =
n→∞
k=αn

n+ 1− 1

α
+O

(
1

n

)
.

The result is direct by using Theorem 13. Since we have the exact value of un,k the mean value
can easily be computed in other cases like k = o(n).
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3. Classical unranking algorithms

We present now a survey of the usual approaches to unrank combinations. The motivation
behind this section is threefold. First the classical algorithms are old, they have been developed
in the 70’s and 80’s and it is a hard task to get access to the papers we will mention. Second,
although they have been analyzed according to the number of calls to the binomial coefficient
computations we present here a standardization of the analysis using generating functions like in
the previous section. Finally, as we will see in Section 4 and in the conclusion of the paper a
detailed analysis of all the possible approaches is necessary to well understand the behaviors of
the computations.

3.1. Unranking through the recursive method. We are dealing with a combinatorial struc-
ture here, combinations, that is very well understood in the combinatorial sense. Thus when trying
to develop an unranking algorithm the first idea consists in developing one based on the classical
recursive generation method presented in [18]. This type of algorithm is based on a recursive
decomposition of the structure into smaller parts. Here, this idea is to use the following fact: a
combination of k elements among J0;n−1K either contains n−1 or does not. In the first case, the
rest of the combination can be seen as a combination of k − 1 elements among n − 1 and in the
second case the combination is a combination of k elements among n− 1. From a counting point
of view, this translates into the well-known identity

(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
and from an unranking

point of view, this translates into Algorithm 3.

Algorithm 3 Recursive Unranking

1: function UnrankingRecursive(n, k, u)
2: L← RecGeneration(n, k, u)
3: L′ ← [0, . . . , 0] . k components
4: for i from 0 to k − 1 do
5: L′[i]← n− 1− L[k − 1− i]
6: return L′

1: function RecGeneration(n, k, u)
2: if k = 0 then
3: return []

4: if n = k then
5: return [0, 1, 2, . . . , k − 1]

6: b← binomial(n− 1, k − 1)
7: if u < b then
8: R← RecGeneration(n− 1, k − 1, u)
9: append(R,n− 1)

10: return R
11: else
12: return RecGeneration(n−1, k, u−b)

Remark 15. An alternative choice would have been to test whether b <
(
n−1
k

)
at line 6. This

corresponds to putting first the combinations that do not contain n − 1 and then those that
contain n− 1. In this case the unranking order is different but the performance are similar.
Proposition 16. The function RecGeneration(n, k, u) computes the u-th combination for of k
elements among n in reverse co-lexicographic order.
Corollary 17. The function UnrankingRecursive(n, k, u) computes the u-th combinations of k
elements among n in lexicographic order.
Proof. The proposition is proved by induction and the corollary is a direct observation given in [14,
p. 47]. �

Here again, we are interested in the average number of calls to the function binomial, when
u describes the whole range of integers from 0 to

(
n
k

)
− 1. Ruskey justifies such a measure by

supposing the table of all binomial coefficients precomputed, thus each call is equivalent. Later, in
Section 4 we will discuss this measure. We introduce the sequence2 un,k equal to the cumulative
number of calls to binomial for the whole range of possible values for u.

2In order to simplify the notations we use several times the notations un,k and U(z) for distinct sequences and
series.
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Lemma 18. Let un,k be the cumulative number of calls to binomial while unranking all possible u
from 0 to

(
n
k

)
−1. The sequence satisfies: un,0 = 0 and un,n+i = 0 for all n and i ≥ 0 and otherwise:

un,k =

(
n

k

)
+ un−1,k−1 + un−1,k.

Proof. If 0 < k < n, calling RecGeneration(n, k, u) incurs one call to binomial and a recursive
call. The cumulative cost of the first call to binomial is

(
n
k

)
, the cumulative cost of the recursive

calls for u <
(
n−1
k−1
)
is un−1,k−1 and the cumulative costs of the recursive calls for u ≥

(
n−1
k−1
)

is un−1,k. �

n
k 0 1 2 3 4 5 6 7 8

1 0 0
2 0 2 0
3 0 5 5 0
4 0 9 16 9 0
5 0 14 35 35 14 0
6 0 20 64 90 64 20 0
7 0 27 105 189 189 105 27 0
8 0 35 160 350 448 350 160 35 0

Table 3. First values of un,k for n = 1..8 and k = 0..n (Algorithm 3)

Theorem 19. Let U(z, y) be the ordinary generating function associated to (un,k), such that
U(z, y) =

∑
n≥0

∑n
k=0 un,k y

k zn. Then,

U(z, y) =
1

1− z − zy

(
1

1− z − zy
− 1

1− z
− zy

1− zy

)
, thus,

un,k =

(
n

k

)
k

(
n+ 1

k + 1
− 1

n− k + 1

)
.

The proof of Theorem 19 is very similar to the one of Theorem 13.

Proof. The first step of the proof consists in exhibiting the ordinary generating function associated
to U(z, y). In order to obtain the equation for U , we start from the result presented in Lemma 18.
The extreme cases are un,0 = 0 and un,n+i = 0 for all n and i ≥ 0. And the recursive equation is
un,k =

(
n
k

)
+ un−1,k−1 + un−1,k.

Again, the numbers
(
n
k

)
appear in the equation, thus we need the bivariate generating function

of binomial coefficients. Le us denote it by B(z, y). It satisfies:

B(z, y) =
∑
n≥0

n∑
k=0

(
n

k

)
zn yk =

1

1− z − zy
.

In order to follow the extreme cases, we must remove the first column k = 0 and the diagonal
k = n:

B̃(z, y) =
1

1− z − zy
− 1

1− z
− zy

1− zy
.

By summing the recursive equation and taking care of the extreme cases we get:∑
n≥1

n∑
k=1

un,kz
n yk = B̃(z, y) +

∑
n≥1

n∑
k=1

un−1,k−1z
n yk +

∑
n≥1

n∑
k=1

un−1,kz
n yk

U(z, y) = B̃(z, y) + z y U(z, y) + z U(z, y).
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We thus deduce

U(z, y) =
1

1− z − zy

(
1

1− z − zy
− 1

1− z
− zy

1− zy

)
.

The second step in the proof consists in extracting the coefficient un,k.

U(z, y) =
1

1− z(1 + y)

(
1

1− z(1 + y)
− 1

1− z
− zy

1− zy

)

=

∑
r≥0

zr(1 + y)
r

 ·
∑
r≥0

zr(1 + y)
r −

∑
r≥0

zr −
∑
r≥1

zryr


=

∑
r≥0

zr(1 + y)
r

 ·
1− 1 +

∑
r≥1

zr ((1 + y)
r − 1− yr)

 .

By extraction the coefficient in front of zn:

[zn]U(z, y) =

n−1∑
`=0

(1 + y)
`
(

(1 + y)
n−` − 1− yn−`

)
=

n−1∑
`=0

(1 + y)
n − (1 + y)

` − yn−`(1 + y)
`

= n(1 + y)
n − (1 + y)

n − 1

y
− y(1 + y)

n
+ yn+1.

The latter result corresponds to the distribution of the costs when k varies from 0 to n. We can
then extract the coefficient of zn yk:

[zn yk]U(z, y) = n ·
(
n

k

)
−
(

n

k + 1

)
−
(

n

k − 1

)
=

(
n

k

)(
n− n− k

k + 1
− k

n− k + 1

)
which completes the proof. �

This sequence un,k is a shifted version of the sequence stored under the reference OEIS A059797.
We thus can complete the properties in OEIS using our results.

Due to the values of the extreme cases when k = 0 and k = n and the symmetry in the
recurrence we obviously obtain the fact that un,k = un,n−k, reflecting the symmetry of the binomial
coefficients.

Corollary 20. The function UnrankingRecursive(n, k, ·) needs in average un,k/
(
n
k

)
calls to

the function binomial. For n being large and k being of the form α · n for 0 < α < 1, we get:

un,k(
n
k

) =
n→∞
k=αn

n+ 2− 1

α(1− α)
+O

(
1

n

)
.

Note that for this algorithm too, the average complexity is only below the worst-case complexity
by a constant (when k ∼ αn).

Naturally, in order to be able to handle large values of n and k, a tail-recursive variant of this
algorithm, or an iterative version should be preferred over the straightforward implementation. In
the latter strategy, the recursive approach is a drawback for some programming languages that do
not handle recursion efficiently (due to the depth of the stack). In fact, today the computer are
able to handle combinations for very big values of n and k thus the recursive approach should be
avoided. Naturally other strategies have been suggested in the literature.

https://oeis.org/A059797
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3.2. Unranking through combinadics. In 1887, E. Pascal [19] and later D. H. Lehmer (detailed
in the book [1, p. 27]) presented an interesting way to decompose a natural number, in what we
call today a mixed radix numeral system. In their case it is the combinatorial number system, or
combinadics. The decomposition relies on binomial coefficients.

Fact 21. Let n ≥ k be two positive numbers. For all integers u, with 0 ≤ u <
(
n
k

)
, there exists a

unique sequence 0 ≤ c1 < c2 < · · · < ck < n such that3

u =

(
c1
1

)
+

(
c2
2

)
+ · · ·+

(
ck−1
k − 1

)
+

(
ck
k

)
.

The finite sequence (c1, . . . , ck) is called the combinadic of u.

For example when n = 5 and k = 3, the number 8 is represented as
(
1
1

)
+
(
3
2

)
+
(
4
3

)
, thus

the combinadic of 8 is (1, 3, 4). In the following Table 4 we present for various values of u the
combinadic of u and the combination of rank u for n = 6 and k = 2. Here we observe that the
exhibited ranking is co-lexicographic and that the combination of rank u can be deduced from
the combinadic of u by reversing it and applying the transformation x 7→ n− 1− x to each of its
components.

rank reverse rank combinadic combination

0 14 (4, 5) (0, 1)
1 13 (3, 5) (0, 2)
2 12 (2, 5) (0, 3)
3 11 (1, 5) (0, 4)
4 10 (0, 5) (0, 5)
5 9 (3, 4) (1, 2)
6 8 (2, 4) (1, 3)
7 7 (1, 4) (1, 4)
8 6 (0, 4) (1, 5)
9 5 (2, 3) (2, 3)
10 4 (1, 3) (2, 4)
11 3 (0, 3) (2, 5)
12 2 (1, 2) (3, 4)
13 1 (0, 2) (3, 5)
14 0 (0, 1) (4, 5)

Table 4. Combinadics and their combination for n = 6 and k = 2

In 2004, using this representation, McCaffrey exhibited in the MSDN article [16], an algorithm
to build the u-th element (in lexicographic order) of the combinations of k elements among n. But
in fact, this algorithm was already published in [14, p. 47] and can also be seen as an extension of
the work of Lehmer. This algorithm is interesting in the sense that it corresponds to the previous
implementation used in the mathematics software system Sagemath [22]4. In the beginning of
2020, we replaced the Sagemath implementation by the algorithm presented in Section 2 5.

The algorithm simply performs the combinadic decomposition of u and then applies the afore-
mentioned transformation. The idea to get the combinadic of an integer 0 ≤ u <

(
n
k

)
is the follow-

ing: ck is obtained as the maximum integer such that u ≥
(
ck
k

)
, then the remaining part u−

(
ck
k

)
is

smaller than
(
n−1
k−1
)
so its can be decomposed recursively into a combinadic with k− 1 components

smaller than n− 1. McCaffrey’s algorithm is described in Algorithm 4 below.

3We extend the definition of binomial coefficients with
(n
k

)
= 0 when k > n.

4The previous unranking algorithm from Sagemath is stored in the Software Heritage Archive
swh:1:cnt:c60366bc03936eede6509b23307321faf1035e23;lines=539-605

5The new unranking algorithm from Sagemath is stored in the Software Heritage Archive
swh:1:cnt:b2a68056554dbf90fa55e76820f348d9d55019e3;lines=539-653

http://archive.softwareheritage.org/swh:1:cnt:c60366bc03936eede6509b23307321faf1035e23;origin=https://github.com/sagemath/sage;lines=539-605
http://archive.softwareheritage.org/swh:1:cnt:b2a68056554dbf90fa55e76820f348d9d55019e3;origin=https://github.com/sagemath/sage;lines=539-653
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Algorithm 4 Unranking a combination

1: function UnrankingViaCombinadic(n, k, u)
2: L← [0, . . . , 0] . k components
3: u′ ← binomial(n, k)− 1− u
4: v ← n
5: for i from 0 to k − 1 do
6: v ← v − 1
7: b← binomial(v, k − i)
8: while u′ < b do
9: v ← v − 1

10: b← binomial(v, k − i)
11: u′ ← u′ − b
12: L[i]← n− 1− v
13: return L

As we noted while explaining Table 4, we work with the reverse of the rank u (see line 3 in
the algorithm) in order to unrank combination in lexicographic order. The presented algorithm is
also close to Er’s algorithm [9] whose representation for combinations is distinct but the computa-
tions are analogous; furthermore in his paper, Theorem 2 corresponds exactly to the combinadic
decomposition.

The function UnrankingViaCombinadic(n, k, u) computes the combinations of k elements
among n of rank u in lexicographic order, though the core of the algorithm is reverse co-lexicographic.
The correctness of the algorithm is stated in [14].

Again, we express the complexity of this algorithm as its number of calls to the function
binomial. First note that, the values n and k being given, the worst cases are obtained when v
gets as small as possible at then end of the loop, thus for all u whose combinadic satisfy c1 = 0.
Hence, the worst case complexity is n − 1. Again, we complete this analysis, by computing the
average complexity of the algorithm. To reach this goal, we introduce the sequence un,k computing
the cumulative number of calls to binomial when u ranges from 0 to

(
n
k

)
− 1.

Lemma 22. Let un,k be the cumulative numbers of calls to binomial while unranking all possible
u from 0 to

(
n
k

)
− 1. The sequence satisfies: un,0 = 1 and un,n+i = 0 for all n and i > 0 and

otherwise

un,k =

(
n

k

)
+ un−1,k−1 + un−1,k.

n
k 0 1 2 3 4 5 6 7 8

1 1 2
2 1 5 3
3 1 9 11 4
4 1 14 26 19 5
5 1 20 50 55 29 6
6 1 27 85 125 99 41 7
7 1 35 133 245 259 161 55 8
8 1 44 196 434 574 476 244 71 9

Table 5. First values of un,k for n = 1..8 and k = 0..n (Algorithm 4)
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Table 5 presents the sequence given in Lemma 22. The difference with the two sequences studied
before lies in the extreme cases. This sequence is a shifted version of the sequence OEIS A264751.
Both combinatorial objects can be put in bijection, and thus some conjectures stated there, are
solved in the following.

Proof. Note that n − ck calls to binomial are necessary to determine ck, then ck − ck−1 calls to
determine ck−1, . . . , c2 − c1 to determine c1. Hence, the total number of binomial coefficients
evaluations necessary to compute the combinadic of u is n − c1 (and thus only depends on c1).
Besides, for a given j ≥ 0, the number of finite sequences c1 = j < c2 < c3 < · · · < ck < n
is equal to the number of sequences 0 ≤ c′2 < c′3 < · · · < ck < n − j − 1 by the change of
variable c′i ← ci − j − 1. Hence, this number is equal to

(
n−1−j
k−1

)
. In addition, there is a first call

to binomial at the beginning of the algorithm to reverse the rank, regardless of the value of u.
We thus obtain:

un,k =

(
n

k

)
+

n−k∑
j=0

(n− j) ·
(
n− j − 1

k − 1

)
.

Using the latter equation, the recursive equation is directly proved by induction. �

Note that in this case the cumulative numbers are not symmetrical un,k 6= un,n−k. In fact the
computation of the combinadics is not symmetrical.

Theorem 23. Let U(z, y) be the generating function associated to (un,k). Then

U(z, y) =
1

1− z − zy

(
1

1− z − zy
− z

1− z

)
; thus

un,k =

(
n

k

)(
n+ 1− n− k

k + 1

)
.

The proof is the same as the one of Theorem 13. The values for un,k are a bit different due to
the extreme cases un,0.

Corollary 24. The average number of calls to binomial in Algorithm 4 for n being large and k
being of the form αn for 0 < α < 1 is

un,k(
n
k

) =
n→∞
k=αn

n+ 2− 1

α
+O

(
1

n

)
.

In the literature there is another algorithm based on combinadics given in [5]. We provide a
pseudo-code equivalent of the original Fortran algorithm in Algorithm 5. Note that the algorithm
does not handle the case k = 1, which should thus be treated separately. There, in the computation
of the combinadic for a given rank, the coefficients are computed from the smallest one, c1, to
the second largest one, ck−1, and finally the value for ck is directly deduced with no need for
further trials. In this algorithm, the variable L contains the combinadic of u (not its reverse). We
note two differences with Algorithm 4. First, last coefficient (ck) is directly computed without
“trying” the different possible values as for the previous coefficients (see line 13). Second, it uses
a combinatorial argument to find the value of the ci coefficients that is the complementary of the
argument used in the privous algorithm: the number of sequences 0 ≤ c1 < c2 < · · · < ck < n

with c1 ≥ j is equal to
∑j
i=0

(
n−i−1
k−1

)
, hence the accumutation performed in the r variable. The

fact that the same combinatorial argument can be used in two different ways here has to be put
in parallel with Remark 15 at the beginning of this section.

The first point mentioned above is an improvement over Algorithm 4, but in fact this second
algorithm is penalised by the extra addition that it has to perform and then undo at line 12
to find each ci. With this approach it is mandatory to compute the accumulation of binomial
coefficients in r until it becomes greater than u to know when to exit the loop. It will appear in
our experimentations in the next section that this has a noticeable impact on performance.

https://oeis.org/A264751
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Algorithm 5 Unranking a combination (alternative algorithm)

1: function UnrankingViaCombinadic2(n, k, u)
2: L← [0, . . . , 0] . k components
3: r ← 0
4: for i from 0 to k − 2 do
5: if i 6= 0 then L[i]← L[i− 1]
6: else L[i]← −1

7: while true do
8: L[i]← L[i] + 1
9: b← binomial(n− L[i]− 1, k − i− 1)

10: r ← r + b
11: if r > u then exit the loop

12: r ← r − b

13: L[k − 1]← L[k − 2] + u− r + 1
14: return L

UnrankingViaCombinadic2(n, k, u) is a lexicographic unranking for combinations. This
algorithm is presented by Buckles and Lybanon in [5] and its correctness is presented in [14].
Finally note it is approximately the implementation in Matlab [6] whose code is also presented
by Ruskey in [20, p. 65]. The latter approach does also trials to find the last coefficient of the
combination instead of computing it directly line in line 15.

Lemma 25. Let un,k be the cumulative numbers of calls to binomial while unranking all possible
u from 0 to

(
n
k

)
− 1. For all n, the sequence satisfies un,k = 0 when k = 1, 2 or k > n and

otherwise:

un,k =

(
n

k

)
+ un−1,k−1 + un−1,k.

The result is proved in an analogous way as Lemma 22, summing over ck−1 instead of c1. In
Table 6 we compute the first values of (un,k). We note the first values are smaller than the previous
ones, Theorem 26 gives their asymptotic behavior.

n
k 0 1 2 3 4 5 6 7 8

1 0 0
2 0 0 1
3 0 0 4 2
4 0 0 10 10 3
5 0 0 20 30 18 4
6 0 0 35 70 63 28 5
7 0 0 56 140 168 112 40 6
8 0 0 84 252 378 336 180 54 7

Table 6. First values of un,k for n = 1..8 and k = 0..n (Algorithm 5)



16 A. GENITRINI AND M. PÉPIN

Theorem 26. Let U(z, y) be the generating functions associated to (un,k). Then

U(z, y) =
z2 y2

(1− z)2 (1− z − zy)
2 ; thus

un,k =

(
n

k

)
k − 1

k + 1
(n+ 1).

Corollary 27. The average number of calls to binomial in Algorithm 5 for n being large and k
being of the form αn for 0 < α < 1 is

un,k(
n
k

) =
n→∞
k=αn

n+ 1− 2

α
+O

(
1

n

)
.

The improvement for the efficiency of the algorithm is seen only on the second order in com-
parison to the one of Corollary 24.

Let us conclude this part with an interesting remark. In our Algorithm 3 while unranking
k elements among n, we combinatorially see

(
n
k

)
as first

(
n−1
k−1
)
and otherwise at

(
n−1
k

)
. This is

the same approach as in Algorithm 5. But as we presented after Algorithm 3, we could have
first be interested in

(
n−1
k

)
and then in

(
n−1
k−1
)
. Then the algorithm would have been in a reverse

co-lexicographic fashion, and it would follwo exactly the same approach as Algorithm 4.

4. Improving efficiency and realistic complexity analysis

We will now show that the complexity study mentioned above is not adequate anymore. Al-
though the approximation that computing one binomial coefficient has a constant cost seems to
have been sufficient in the past (due the limitation of the implementations to 32-bits integers,
see [16] who seems to be the first to introduce combination unranking using big integer compu-
tations), this is not a valid model anymore as big integers are now widely used. We will discuss
the impact of big integer manipulation and some optimizations that significantly improve the
performance of all algorithms.

Using the two last sections we know the different algorithms that are mostly used in practice.
But having in mind the results exhibited in Table 1 there are probably deep modifications in the
codes that are implemented. Obviously by using an implementation calling directly big integers
through the GMP libray in C is the best way too compute very fast, but the distinct behaviors
presented in the table militate in favor of other improvements.

For all algorithms we proved that the average number of calls to the function binomial is
equivalent to n (when k grows linearly). A first question to investigate is about this complexity
measure: is it reasonable? An obvious approach consists in analyzing the average time spent for
the computation of uniformly sampled combinations.

4.1. First experiments to visualize the time complexity in real context. In the two
next plots in Figure 1 we have represented the average time needed for the computations of 500
combinations for each pair (n, k = n/2) while n is ranging from 250 to 10, 000 with a step size
of 250. The choice k = n/2 has been done because it corresponds to the worst complexity cases
while k is ranging 0 to n. To conduct experiments we have implemented all algorithms in C using
the classical GMP library for big integers6. On the leftmost plot we represent the average time for
the unranking of a combination for n ranging from 250 to 10, 000 by steps of 250 too. Note that
all the curves are merged: all algorithms seem to need the almost exactly the same time to unrank
a combination.
In the rightmost plot, we present a version with memoization for the algorithms: we first run a
pre-computation step storing all binomial coefficients that will be used. The second step consists in
unranking the combinations by using the pre-calculated values for the binomial coefficients. On our
plot we represent only the time used for the second step. We remark that the recursive Algorithm 3

6The implementation and the exhaustive material used for repeating the experiments are available at http:
//github.com/Kerl13/combination_unranking.
The experiments have been driven through a standard laptop PC with an I7-8665U CPU, 32Gb RAM running
Ubuntu Linux 2020.

http://github.com/Kerl13/combination_unranking
http://github.com/Kerl13/combination_unranking
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is not as efficient as the others. Later on we will be able to state it is due to its recursive nature.
As we have earlier explained, Algorithm 5 should be less efficient as Algorithm 4: this is the case.
Our Algorithm 2 and Algorithm 4 are the most efficient when used in this setup.

Figure 1. Time (in ms) for unranking a combination, with n = 250..10, 000
and k = n/2.

While the number of calls to the binomial coefficients is linear in n, it is clear that it is not the
case for the time complexity of the algorithms (see on the leftmost plot). But, once the binomial
coefficients have been pre-computed, then running the four algorithms without computing binomial
coefficients is closer to a linear function but they still are not really linear.

While memoizing all binomial coefficients when n is of order of some hundreds is possible, it is
not the case anymore when n is of the order of several thousands7. While such cases did not occur
when the methods (e.g. [5, 9]) were derived, it is now necessary to take the cost of arithmetic
operations into account now that big integers are mode widely used (the first use of big integers
for combination unranking seems to fall back to 2004 [16]). A more detailed analysis of the time
complexity is necessary.

4.2. Improving the implementations of the algorithms. Before going further with the ex-
periments, we propose an improvement in the computation of the binomial coefficient, that is
applicable to all the algorithms presented in this paper.

In all of the presented algorithms, a binomial coefficient is computed at each step of the gen-
eration. There are various ways to implement those. One possibility is to compute the two
products n · (n− 1) · (n− 2) · · · (n− k + 1) and k! separately using a divide and conquer strategy
as described in [4, Section 15.3] and then to compute the division.

In the unranking algorithms, instead of doing the “full” evaluation of the binomial coefficient at
each step, it is possible to reuse the computations from the previous step and to deduce the value
of the new coefficient by a constant number of multiplications or divisions by a small integer. This
is possible because in all algorithms the parameters of the binomial coefficients vary only by ±1
from one step to the other. For instance, in Algorithm 2, just before incrementing i at line 9 the
coefficient for the next iteration can be obtained by multiplying b by k − 1 − i and dividing it
by n − 1 −m − i. Similarly, in the other branch of the if, just before incrementing m at line 12,
the value of the coefficient for the next iteration can be obtained by multiplying b by n −m − k
and dividing it by n − 1 − m − i. In the end, only the first binomial coefficient is computed
from scratch and all others are obtained as described above. This lowers the amortized cost of
computing one coefficient to Θ(1) rather than Θ(k). This optimization is applicable to all the
algorithms presented in this paper.

In Algorithm 6, we propose an optimized version of our Algorithm 2 based on the above remarks
on binomial coefficients. It also includes some other enhancements. First, instead of computing
the permutation rank of the combination and then unranking the combination as a permutation,
it is possible to process the coefficients of the factoradic decomposition on the fly to extract the

7For the experiments of Figure 1 we have only computed the necessary binomial coefficients using a lazy approach.
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right value from the set {0, 1, 2, . . . , n− 1}. Second, we can note that we are in a special use-case
of the Extract function where values are extracted in increasing order. Hence, there is no need
to explicitly store the set of remaining values (not yet in the combination) to get access its m-th
value: it is m+ i where i is the number of already extracted values. Finally, the last component of
the combination can be deduced without computing more binomial coefficients (line 15) in order
to leave the loop earlier.

Algorithm 6 Unranking a combination with optimization

1: function OptimizedUnrankingCombination(n, k, u)
2: L← [0, . . . , 0] . k components
3: b← binomial(n− 1, k − 1) · n
4: m← 0; i← 0;
5: while i < k − 1 do . Invariant: b =

(
n−m−i−1
k−1−i

)
· (n−m− i)

6: b← b/(n−m− i)
7: if b > u then
8: L[i]← m+ i
9: b← b · (k − i− 1)

10: i← i+ 1
11: else
12: u← u− b
13: b← b · (n−m− k)
14: m← m+ 1

15: if k > 0 then L[k − 1]← n+ u− b
16: return L

Before going on with the efficiency comparisons, we use the remarks related to the binomial
coefficient computation to improve Algorithm 4, Algorithm 5 and Algorithm 3. Furthermore, in
order to make the comparison fair, we used a variant of Algorithm 3 for the recursive approach in
which the array storing the result is allocated with the right size at the beginning of the execution,
like in the other algorithms. Also, in order not to penalize it due to its recursive nature, the order
of some instructions have been changed so that it is tail-recursive. The optimized version is given
in Algorithm 7.

Algorithm 7 Recursive method with optimizations

1: function OptimizedUnranking-
Recursive(n, k, u)

2: L← [0, . . . , 0] . k components
3: b← binomial(n, k)
4: UnrankTR(L, 0, 0, n, k, u, b)
5: return L

1: function UnrankTR(L, i,m, n, k, u, b)
2: if k = 0 then do nothing
3: else if k = n then
4: for j from 0 to k − 1 do
5: L[i+ j]← m+ j

6: else
7: b← b/n
8: if u < b then
9: L[i]← m

10: b← (k − 1) · b
11: UnrankTR(L, i+1,m+1, n−1, k−1, u, b)
12: else
13: u← u− b
14: b← (n− k) · b
15: UnrankTR(L, i,m+ 1, n− 1, k, u, b)
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In UnrankTR, the variable i represents the position in L of the next value to be computed
and the variable m represents the next candidate to be the value of L[i]. The invariant satisfied
by b is that UnrankTR is always called with b = n ·

(
n−1
k−1
)
.

We propose a second time efficiency comparison for some algorithms with their optimizations in
the Figure 2. Comparing this plot with the leftmost one of Figure 1 we note that when n = 10000
the algorithms run approximately 45 times faster. Again we note that Algorithm 5 is still less
efficient than the others that all seem to be equivalent.

Figure 2. Time (in ms) for unranking a combination with the optimized algorithms

In order to understand the behavior of the curves of the previous plot, we introduce another
way to analyze the time complexity in Figure 3. Now we take n = 10, 000 and we let k ranging
from 250 to 9750 with an iteration step of 250. For each step we represent an average value for
500 tests. Again (on the leftmost plot) the dashed lines correspond to the first version of each
algorithm, and the solid ones to the optimized versions. On the rightmost plot we only focus on
the optimized versions of the four algorithms. We remark the worst time complexity if when k
reach n/2. Algorithm 6, the tail-recursive Algorithm 7 and Algorithm 4, do behave almost in the
same way. While Algorithm 4 is a little bit more efficient when k < n/2 the two other are a bit
more efficient for the second half range.

Figure 3. Time (in ms) for unranking a combination, with n = 10, 000 and
k = 25..9975

So the curves for Algorithm 7, Algorithm 6 and Algorithm 4 (once optimized) are hard to
distinguish. There is a surprising explanation for this. In fact, it can be shown that all three algo-
rithms perform the exact same arithmetic operations on big integers except for a few terms at then
end of their execution, due to their base cases. In the case of the recursive and factoradics-based
algorithms, the similarity goes further. Algorithm 7 being tail-recursive, it can be automatically
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translated into the imperative style8 and the result of the automatic translation is an algorithm
which is almost identical to Algorithm 2. In the case of Algorithm 4 (once optimized), although the
computations are the same, they are used to obtain the values of the ci coefficients in a different
order, which makes the parallel less obvious.

As a result, the only fundamental differences between all these algorithms are their base cases.
Since they are all based on a different combinatorial point of view, their base cases have been
characterized slightly differently but, as we can see by comparing the results of their complexity
analyses (establishing how many calls to binomial are done), this only impacts the second order
of their complexity.

Besides, for all algorithms, a significant speedup can be achieved by re-using the value of the
most recently computed binomial coefficient. To the best of our knowledge, this is the first time
this trick is used for the unranking of combinations.

4.3. Realistic complexity analysis. We now propose a more precise complexity analysis based
on a more realistic cost model. Recall that we deal with big integers. More precisely for n and k
being given, the ranks as well as the binomial coefficients computed during the generation can
have up to Ln,k = 1 + log2

(
n
k

)
bits. Using Stirling’s approximation we get that

Ln,k ∼
n→∞
k=αn

n

(
α log2

1

α
+ (1− α) log2

1

1− α

)
.

Besides, the cost of the multiplication of a big integer with O(n) bits with a smaller integer
of O(lnn) bits can be bounded by O( n

lnnM(lnn)) where M(x) is the cost of multiplying two x-
bits integers. This can be achieved by writing the big integer in base 2log2 n = n and performing
the multiplication using the naive “textbook” algorithm in this base. The first term n

lnn counts
the number of operations done in base n and the second term M(ln) is the cost of one single
multiplication in this base.

A rough upper bound for M(x) is x2, obtained by using the naive multiplication algorithm.
Actually, the naive algorithm is often used in practice for small values of x since the asymptotically
more efficient algorithms only become better above a given threshold. For our use-case n is likely
to fit in a machine word in practice and thus the naive algorithm must be used. Hence, the
upper bound of O(n lnn) for the cost of the multiplication of a small integer by a big integer
should faithfully reflect the actual runtime of our implementations, although it is theoretically
not optimal. A tighter bound of O(n(ln lnn)(ln ln lnn)) can be obtained by using the Schönhage-
Strassen algorithm, though it is not advisable in practice.

In addition to the cost of the multiplications discussed above, a linear number of comparisons
and additions are performed. The cost of one such operation is linear in n and thus negligible
compared to the cost of the multiplications. Finally, the first binomial coefficient must be computed
from scratch which can be done at negligible cost compared to n2

lnnM(lnn).
By combining the above discussion with the results from the previous sections, we get the

average bit-complexity of all algorithms when k grows linearly with n as presented in Theorem 28.
Theorem 28. For all the optimized algorithms of the present paper, there exist a constant c > 0
such that for all n large enough and k = αn for 0 < α < n, the bit-complexity of the algorithm is
bounded by:

c · n2 lnn ·
(
α log2

1

α
+ (1− α) log2

1

1− α

)
In Figure 4 we display the time complexity of our algorithm (in green) with the graph of the

function α 7→ C ·
(
α ln 1

α + (1− α) ln 1
1−α

)
where the constant C has been chosen so that the

maximum values of both curves coincide.
This validates experimentally our complexity results. Besides, we checked by profiling the

optimized algorithms that most of the run time is spent in the arithmetic operations, which also
confirms the validity of this result.

8The conversion of a tail-recursive algorithm into its imperative version is called “tail-call” optimization and is
implemented by most compilers for languages with recursion.
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Figure 4. Merge of Algorithm 2 and theoretical complexity

5. Extensions and conclusion of the algorithmic context

5.1. Objects counted by multinomial coefficients. Let n and m be two positive integers
and K = (k1, k2, . . . , km) be a finite sequence of non-negative integers whose sum equals to n.
The multinomial coefficient

(
n

k1,...,km

)
counts the number of ways of depositing n distinct objects

into m distinct bins such that there are ki objects in the i-th bin. It can also be interpreted as
combination with repetitions: we have a pool of m kinds of different objects, we must pick a finite
sequence of n objects such that k1 of them are of the first kind, k2 of the second kind and so on.

Note that when m = 2 the multinomial coefficient corresponds to a binomial coefficient. In-
formally, Proposition 8 (related to combinations) states that the combinations are in one-to-one
correspondence with permutations containing two increasing runs. We have an analogous inter-
pretation here: the ranks from 0 to

(
n

k1,...,km

)
− 1 are in one-to-one correspondence with size-n

permutations composed of m increasing runs. We now exhibit formally this link.

Proposition 29. Let n and m be two positive integers and K = (k1, k2, . . . , km) each object
enumerated by

(
n

k1,...,km

)
is represented by a finite sequence (`1, `2, `km) where for all 1 ≤ i ≤ m,

`i is an increasing finite sequence of length ki. Furthermore, the union over i of all elements of `i
is exactly {0, 1, . . . , n− 1}.

Our unranking algorithms relies on the classical point of view relating a multinomial coefficient
to a product of binomial coefficients.(

n

k1, . . . , km

)
=

(
km
km

)
·
(
km + km−1
km−1

)
· · ·
(
km + · · ·+ k2

k2

)
·
(
km + · · ·+ k1

k1

)
.

Proposition 30. The function UnrankingCombinationWithRepetitions(n, (k1, . . . , km), u)
computes the u-th object counted by

(
n

k1,...,km

)
in lexicographic order.

The core of the algorithm consists in computing the rank of the permutation, written in fac-
toradics, associated to the combination with repetitions we are interested in. It remains then to
unrank a permutation.

Proof. Based on Proposition 29 the core of the algorithm computes the rank of a permutation
containing m increasing runs respectively of lengths k1, k2, . . . , km. Determining the contribution
of each run in the factoradic decomposition of the permutation rank is done in the external loop
starting in line 5, from km downto k1. The correctness of our algorithms relies on the following
loop invariant:

• the values of fj for all 0 ≤ j < km + · · ·+ ki+1 have been computed and stored in F ;
• the values of fkm+···+ki+1

, . . . , fkm+ki+1+ki−1 (which has not been determined yet, as we
enter the loop) are equal to the factoradics othe the rank u′ mod

(
km+···+ki

ki

)
in the com-

binations of ki elements among km + · · ·+ ki possible elements.
• the variable u′ holds the rank of the runs that must be still unranked.
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Algorithm 8 Unranking a combination with repetitions

1: function UnrankingCombinationWithRepetitions(n,K = (k1, . . . , km), u)
2: F ← [0, . . . , 0] . n components in M
3: u′ ← u
4: n′ ← km
5: for i from m− 1 downto 1 do
6: n′ ← n′ + ki
7: b← binomial(n′, ki)
8: (u′, u′′)← division(u′, b)
9: F ′ ← factoradic(RankConversion(n′, ki, u

′′))
10: for j from 0 to ki − 1 do
11: F [n′ − ki + j]← F ′[n′ − ki + j]

12: r ← composition(F )
13: return UnrankingPermutation(n, r)

division(s, t): returns the pair (q, r) corresponding respectively to the quotient and the
remainder of

the integer division from s by t.

Once the factoradic F ′ of the run under consideration has been computed (line 10), it remains to
update F according to the ki last components of F ′. �

5.2. Objects counted by k-permutations. Let n and k be two positive integer. A k-permutation
is a combination of k elements that are ordered among n elements. Objects that are counted by
this notion have a cardinality corresponding to

k!

(
n

k

)
=

(
n

1, . . . , 1, n− k

)
.

Proposition 31. The function UnrankingKPermutation(n, k, u) returns the result to the call
of UnrankingCombinationWithRepetitions(n, (1, . . . , 1, n − k), u). Thus it computes the
u-th k-permutation among n elements in lexicographic order.

Proof. The facts that both combinatorial classes have the same cardinality and that the algorithm
for unranking combination with repetitions is lexicographic induce the correctness of the function.

�

6. Conclusion

As a surprising result we thus have remarked that all usual algorithms for the unranking of
combinations (first the recursive method but also the algorithms using combinadics, and also our
new algorithm based on factoradics) share a very similar core, doing almost the same computations
in order to reconstruct the combination under consideration.

One interesting remark is that understanding in details the core computations that are necessary
to unrank combinations, it is possible to significantly improve all algorithms. This understanding,
joint with a detailed and realistic theoretical complexity analysis leads to a prediction of the run
time of the algorithm that matches completely the actual run time of their implementations.

However due to details that are neglected in practice, we realize in Table 1 that some improve-
ments are still necessary in various Computer Algebra Systems in order to get the most efficient
implementations possible for the unranking of combinatorial objects.
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experiments about our algorithm.
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