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Abstract
We propose two efficient algorithms for generating uniform random directed acyclic graphs, including
an asymptotically optimal exact-size sampler that performs n2

2 + o(n2) operations and requests to a
random generator. This was achieved by extending the Boltzmann model for graphical generating
functions and by using various decompositions of directed acyclic graphs. The presented samplers
improve upon the state-of-the-art algorithms in terms of theoretical complexity and offer a significant
speed-up in practice.
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1 Introduction

Random generation has many applications in various scientific areas. It is, for instance,
used in physics for the simulation of phenomena such as the Ising model [41] or chord
diagrams (which are linked with quantum field theory) [10], in biology for the study of RNA
secondary structures [36], in software engineering for automated testing a la QuickCheck [8]
and fuzzing [16], in algorithmics for computing the volume of convex polytopes [30] or the
permanent of matrices [24] using randomised algorithms, or in mathematics and theoretical
computer science as an experimentation tool [5].

Due to the widespread use of random generation, generic approaches and frameworks for
the design of samplers have been developed. One of the earliest such framework is that of the
so-called “recursive-method” — introduced in [32] and later systematised in [19] — where
the idea is to rely on counting sequences to guide the various random choices made by the
sampling algorithm. Another frequently used approach for random generation is the Markov
chain method [23], which involves constructing a Markov chain whose states are the desired
structures (e.g. graphs, permutations, trees) and running a random walk on this state space
until it converges to a stationary distribution, typically designed to be uniform. Another
important approach, upon which we build in this work, is the Boltzmann method described
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in [14]. This method, which has undergone significant improvements and generalisations
since its inception [17, 35, 4, 3, 1], enables the automatic derivation of efficient samplers from
combinatorial specifications of a size close to a target size n and guarantees that two objects
of the same size are equiprobable.

In this paper, we focus on the particular problem of the uniform random generation of
Directed Acyclic Graphs (DAGs). DAGs are a ubiquitous data structure in computer science.
They appear naturally as a result of tree compaction, for instance for the compression of
XML documents [6], or as a means of representing partial orders [26], typically in scheduling
problems [7, 9]. The combinatorial study of DAGs dates back at least to the early 1970s
with the work of Robinson [37, 38] and Stanley [39]. The problem of efficient uniform DAG
generation is more recent however. A first algorithm was given in 2001 in [31], based on the
Markov chain approach, and motivated by information visualisation applications. Since then,
the problem of efficient DAG sampling has drawn significant attention, particularly in statistics
for inferring the structure of Bayesian networks [25]. A fruitful line of work [27, 28, 40, 29]
pushed the limits of DAG sampling from the O(n5 ln n) complexity of the initial design [31]1
to a O(n2) time complexity with quadratic pre-processing, thus achieving near-optimal
complexity. Notably, this last algorithm is based on ideas from the recursive method,
although it was initially thought that this approach was slower than Markov chain based
techniques.

The first contribution of the present paper is to extend the framework of Boltzmann
sampling to families of directed graphs and to demonstrate its effectiveness by applying
it to DAG generation. This work opens the way for largely automating the process of graph
generation without sacrificing performance, as we shall demonstrate. The second contribution
of this paper, made possible by our extension of the Boltzmann framework, is to close the gap
between existing approaches and the theoretically optimal complexity for DAG generation
by providing an asymptotically optimal exact-size sampling algorithm. By optimal, we
mean that our sampler consumes n2

2 + o(n2) random bits on average, which is asymptotic to
the entropy of the uniform distribution over size-n DAGs. Contrary to the state-of-the-art
sampler from [40], our algorithm does not require any preprocessing. Furthermore, in terms of
memory accesses, our algorithm can generate DAGs of size n by performing a first O(n)-time
rejection phase, followed by a single pass over the adjacency matrix of the output, which
induces only n2

2 + O(n) memory accesses.
The paper is structured as follows. In Section 2, we recall the notion of the graphic

generating function from [38, 11] as well as earlier results on DAGs, and introduce a
generalisation of the Boltzmann model for digraph families. Then, in Section 3, we present
two possible approaches to implementing Boltzmann samplers for DAGs. In addition to the
algorithmic results, these two approaches offer complementary perspectives on the structure
of random DAGs with different implications, which is why we chose to present both. Building
on our samplers from the previous section, we demonstrate in Section 4 how to leverage the
Boltzmann framework to achieve optimal exact-size sampling for uniform DAGs.

In practice, the C/C++ implementation of our algorithms performs several orders of
magnitude faster than the state-of-the-art sampler available at [42] (also written in C++).
Whereas their implementation samples a uniform DAG of size n = 4096 in around 3s, our
fastest algorithm does so in about 20ms and can reach size n = 200000 in about 2s on a
consumer-grade laptop. Our implementations are available online at https://osf.io/g4x
k8/overview?view_only=a7781b4b2be54b61b0087ee02a4fee5e for others to reproduce

1 The original article claims a O(n4) complexity that was later disproved by [27].

https://osf.io/g4xk8/overview?view_only=a7781b4b2be54b61b0087ee02a4fee5e
https://osf.io/g4xk8/overview?view_only=a7781b4b2be54b61b0087ee02a4fee5e
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our experiments, and a more thorough benchmark will be conducted in the near future.

2 Definitions and basic properties

Let R and Z denote the sets of real numbers and integers, respectively. For a, b ∈ Z such
that a < b, let [a..b] = {a, a + 1, . . . , b}. For a set X and some functions f, g : X → R, we
write f ∝ g if f is proportional to g, which means that there exists a constant c ̸= 0 such
that f(x) = c · g(x) for any x ∈ X. For a generating function f(z), we denote the operation
of extracting the coefficient of zn in the formal power series f(z) =

∑
n fnzn by [zn]f(z). By

∂xf(x, y), we denote the partial derivative of a function f(x, y) with respect to x.

2.1 Graphic generating functions
For our purposes, we need to use an uncommon type of generating function called a graphic
generating function (GGFs). For any class G consisting of graphs, the graphic generating
function of G is given by the formula

G(z, w, u) =
∑
G∈G

zv(G)we(G)us(G)

(1 + w)(
v(G)

2 )v(G)!
,

where v(G) is the number of vertices of the graph G, e(G) is its number of edges, and s(G) is its
number of sources. Whenever the variable u is not of interest, we write G(z, w) = G(z, w, 1).

In particular, by DAG(z, w, u) we denote the graphic generating function of labelled
directed acyclic graphs. GGFs were first introduced by Robinson in [38] under the name of
special generating functions in order to derive exact and asymptotic enumeration formulas for
DAGs. The more explicit name of graphic generating functions dates back to at least 1995 in
the work of Gessel [21], who used them to derive more recurrence formulas for DAGs. What
makes GGFs useful for the enumeration of graphical objects is that their product encodes
the so-called “arrow-product”.

▶ Definition 1. The arrow product of two classes A and B of digraphs, denoted by A B, is
the class of all digraphs resulting from connecting any pair of graphs (a, b) ∈ A× B with an
arbitrary number of directed edges from the vertices of graph a to the vertices of graph b.

An illustration of the arrow product is given in Figure 1. This operation can be nicely
expressed in the framework of graphic generating functions since

(A B)(z, w) = A(z, w) ·B(z, w) . (1)

A proof of this property, as well as many applications of GGFs are available in [11].
As mentioned above, the graphic generating function of directed acyclic graphs is already

known from the works of Robinson [38], but it was also independently obtained by Stanley [39]
using a different approach. It was later used to study various parameters of DAGs, notably
in [22, 11, 12]. Let Set(z, w) be the graphic generating function of arcless graphs, given by
the formula

Set(z, w) =
∑
n≥0

zn

(1 + w)(
n
2)n!

. (2)

The aforementioned studies have shown that

DAG(z, w) = 1
Set(−z, w) and DAG(z, w, u) = Set((u− 1)z, w)

Set(−z, w) . (3)
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A B

Figure 1 Illustration of the arrow product: the two graphs are drawn for some classes of
digraphs A and B and the grey dotted edges are a possible set of edges from the A component to
the B component introduced by the arrow product. Labels are omitted for the sake of clarity.

An interesting property of the Set function that we will use on several occasions in this
paper is that

∂z Set(z, w) = Set
(

z

1 + w
, w

)
. (4)

2.2 A graphic Boltzmann model
In [14], the authors defined two variants of the Boltzmann model: the ordinary and exponential
versions (corresponding to combinatorial classes with ordinary and exponential generating
functions, respectively). Since we are dealing with graphic generating functions, we need to
introduce a natural extension of the Boltzmann model for digraphs.

▶ Definition 2 (Graphic Boltzmann model). Given a class G of digraphs, the graphic Boltzmann
model on G is the probability distribution assigned to any G ∈ G given by

PG,z,w,u[G] = zv(G)we(G)us(G)

(1 + w)(
v(G)

2 )v(G)!G(z, w, u)
·

Whenever it is clear from the context, we will omit the G subscript in order to make the
notation lighter. The same applies to the variable u when it is not of interest (we set u = 1).
We will also omit the term “graphic” in the rest of the paper since this is the only variant of
the model that we use here.

Our goal is to find a Boltzmann sampler ΓDAG(z, w), which is an algorithm that, for
given parameters z and w, produces a random labelled directed acyclic graph G according to
the corresponding Boltzmann model. The parameters z and w influence the expected number
of vertices and edges in the generated DAG. Graphs with the same number of vertices and
edges are equally probable. Note that for w = 1, the probability of generating a given DAG
G is

Pz,1[G] = zv(G)

2(v(G)
2 )v(G)! DAG(z, 1)

,

therefore all graphs with the same number of vertices are equally probable.
The graphic Boltzmann model introduced above has composition properties similar to

those of the more classical ordinary and exponential Boltzmann models. However, providing
a comprehensive overview of graphic Boltzmann samplers is beyond the scope of this paper,
as we will focus only on DAG sampling.
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2.3 A useful property of graphic generating functions
Consider labelled digraphs that contain a fixed set of vertices W , and let C be any set of
digraphs whose vertex set is exactly W . We will refer to C as possible configurations. Now,
let G be a class of possible digraphs, that is:

for every G ∈ G, the induced subgraph G[W ] is isomorphic to some C ∈ C,
let C = (W, F ) ∈ C and G = (V ∪̇W, E∪̇F ) ∈ G, then for all C ′ = (W, F ′) ∈ C \ {C}, all
graphs G′ = (V ∪̇W, E∪̇F ′) also belong to G.

Analogously, let Ĉ ⊆ C be a set of permitted configurations and Ĝ be a class of permitted
digraphs in which only permitted configurations appear as induced subgraphs. Then,
according to the Boltzmann model, the probability of drawing a permitted graph that
belongs to Ĝ from all possible graphs G is equal to

PG,z,w[Ĝ] = Ĝ(z, w)
G(z, w) =

∑
Ĉ∈Ĉ we(Ĉ)∑
C∈C we(C) . (5)

For example, let W be a fixed set of n vertices, C contain all digraphs with the vertex set W ,
and we allow only one specific digraph C with j edges (that is, Ĉ = {C}). Then, the probability
of sampling the allowed graph from the possible graphs G is given by wj/(1 + w)n(n−1).

3 Two complementary approaches to Boltzmann sampling

In this section, we present two distinct solutions to the problem of implementing a Boltzmann
sampler for DAGs. One of our solutions is based on the notion of root-layering that Robinson
used in [37] to establish the first recurrence formulas for DAGs. This idea is natural in the
context of DAGs, but requires us to design an ad-hoc procedure in order to handle the layers
in the Boltzmann model. Our second solution relies on a new recursive decomposition of
DAGs, reminiscent of peeling processes on maps, which avoids the use of inclusion-exclusion
and thus allows to use more standard Boltzmann sampling techniques.

3.1 Boltzmann sampling based on root-layerings
3.1.1 Unique decomposition of DAGs: root-layering
In this section, we present a directed acyclic graph decomposition, which is a crucial
observation for the construction of our Boltzmann sampler.

▶ Definition 3. A root-layering (V1, . . . , Vk) of a directed acyclic graph G = (V, E) is an
ordered partition of the set of vertices V such that for i ∈ [1..k], the set Vi consists of the
sources of the graph resulting from the removal from the graph G of all vertices belonging to
the previous sets V1, . . . , Vi−1.

The example of root-layering is shown in Fig. 2.

1

5 2

3 6

41

5 2

3 6

4

layer 1 layer 2 layer 3 layer 4

Figure 2 A labelled DAG with 6 vertices and its root-layering on the right. Here the layers
are {1}, {3, 5}, {2, 6}, and {4}.
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▶ Theorem 4. Given a directed acyclic graph G = (V, E), let (V1, . . . , Vk) be the root-layering
of the graph G. Then (V1, . . . , Vk) is the only tuple (U1, . . . , Ul) of non-empty disjoint sets
summing up to V that satisfies
1. (disallowed backward edges) (∀i, j ∈ [1..l])(i ≤ j =⇒ (Uj × Ui) ∩ E = ∅),
2. (obligatory forward edges) (∀i ∈ [1..l − 1])(∀v ∈ Ui+1)(∃u ∈ Ui)((u, v) ∈ E).
Furthermore, for given disjoint sets of vertices V1, . . . , Vk such that V = V1 ∪ . . . ∪ Vk, and
any set of edges E ⊆ V × V , if the graph G = (V, E) satisfies property 1, then G is a directed
acyclic graph.

Proof. For now, let us focus on the first part of the theorem. For i ∈ [1..k], let Gi be the
subgraph of the graph G induced by the set of vertices Vi ∪ . . . ∪ Vk. Then Vi is the set of
sources of the graph Gi, thus for every v ∈ Vi there is no vertex u ∈ Vi ∪ . . . ∪ Vk such that
(u, v) ∈ E, which proves property 1. Fix i ∈ [1..k− 1] and some vertex v ∈ Vi+1. This vertex
is the source of the graph Gi+1, but it is not the source of the graph Gi. Hence, there must
exist some vertex u ∈ Vi ∪ . . . ∪ Vk such that (u, v) ∈ E, but this vertex does not belong to
the set Vi+1 ∪ . . . ∪ Vk, so u ∈ Vi must hold, which proves property 2.

Now let (U1, . . . , Ul) be some tuple of non-empty disjoint sets summing up to V , which is
not the root-layering of the graph G. For i ∈ [1..l], let G′

i be the subgraph of the graph G

induced by the set of vertices Ui ∪ . . . ∪ Ul. Then there exists i such that some source v of
the graph G′

i does not belong to the set Ui or there exists v ∈ Ui such that v is not a source
of the graph G′

i. In the first case, there exists j ∈ [i + 1..l] such that v ∈ Uj . Since v is the
source of the graph G′

i and j − 1 ≥ i (so the vertices of Uj−1 are also the vertices of the
graph G′

i), there is no vertex u ∈ Uj−1 such that (u, v) ∈ E, so property 2 is not satisfied. In
the second case, since the vertex v ∈ Ui is not a source of the graph G′

i, there must exist
some vertex u ∈ Ui ∪ . . . ∪ Ul such that (u, v) ∈ E, so property 1 does not hold.

Let us move on to the second part of the theorem. Assume that property 1 holds. Fix
i ∈ [1..k] and v0 ∈ Vi. Let v0 → v1 → . . .→ vj be a path in the graph G, and let i0, i1, . . . , ij

be indices such that v0 ∈ Vi0 , v1 ∈ Vi1 , . . . , vj ∈ Vij . Then, for property 1 to hold, we must
have i0 < i1 < . . . < ij , which implies that i0 ̸= ij . This means that v0 ̸= vj and the path
v0 → v1 → . . . → vj is not a cycle. Therefore, no path in the graph G forms a cycle, and
thus G is a directed acyclic graph. ◀

3.1.2 Boltzmann sampler

From the previous section, we can see that DAGs can be drawn as follows:
1. generate layers of vertices,
2. draw edges satisfying properties 1 and 2 from Theorem 4,
3. assign random labels to the vertices.
In this way, we will generate a specific DAG with the root-layering consisting of the layers
generated in the first step.

To generate graphs according to the Boltzmann model, we need to derive a proper
probability distribution for steps 1 and 2 of the above general schema. The probability
distribution of the sizes of consecutive sets in the root-layering will be shown in Lemmas 5-7
and the probability distribution of the edges given the root-layering will be shown in Lemma 8.

First, let us determine the probability distributions of the sizes of sets in the root-layering
of a random DAG. Let N1, N2, . . . be random variables that denote the sizes of successive sets
V1, V2, . . . in the root-layering of a DAG drawn from the distribution given by the Boltzmann
model. Assume that we have already drawn k sets of sizes n1, . . . , nk. We need to determine
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the probability distribution of the size of the next set in the root-layering Nk+1 conditioned
on N1 = n1, . . . , Nk = nk.

▶ Lemma 5. The process of generating sizes of consecutive sets in the root-layering is a
time-homogeneous Markov chain, that is

Pz,w[Nk+1 = nk+1|N1 = n1, . . . , Nk = nk] = P[N2 = nk+1|N1 = nk] .

Proof. For any DAG G, let rl(G) be the sequence of the sizes of successive sets in the
root-layering of G. For any sequence σ = (n1, . . . , nk), let σ ⪯ rl(G) mean that the first
k sets in the root-layering of graph G have sizes n1, . . . , nk. According to the Boltzmann
model given in Definition 2, the probability that the set Vk+1 has size nk+1 provided that the
previous sets have sizes n1, . . . , nk is proportional to the graphic generating function of the
class of all DAGs such that (n1, . . . , nk, nk+1) ⪯ rl(G). Each such DAG can be divided into
three parts: the subgraph induced by the vertices V1 ∪ . . . ∪ Vk−1, the subgraph induced by
the remaining vertices, which has nk sources, and the edges between vertices V1 ∪ . . . ∪ Vk−1
and the remaining vertices. Note that from Theorem 4 we know that all these edges are
optional except the edges between sets Vk−1 and Vk, where every vertex from Vk needs to
be connected by an edge with at least one vertex from Vk−1. Hence, the class of all DAGs
G such that (n1, . . . , nk, nk+1) ⪯ rl(G) can be obtained by performing an arrow product
on the class of all DAGs G such that (n1, . . . , nk−1) = rl(G) and the class of all DAGs
G such that (nk, nk+1) ⪯ rl(G), and discarding forbidden combinations of edges between
sets Vk−1 and Vk. From (5) we can see that the generating function of this class can be
obtained by multiplying the graphic generating function of the arrow product by the term(

(1+w)nk−1 −1
(1+w)nk−1

)nk

, since it corresponds to allowing only non-empty combinations of edges
between Vk−1 and v for each vertex v ∈ Vk. From the formula (1) for the graphic generating
function of the arrow product, we obtain

Pz,w[Nk+1 = nk+1|N1 = n1, . . . , Nk = nk] ∝
∑

G∈DAG
(n1,...,nk,nk+1)⪯rl(G)

G(z, w)

=
(

(1 + w)nk−1 − 1
(1 + w)nk−1

)nk

 ∑
G∈DAG

(n1,...,nk−1)=rl(G)

G(z, w)


 ∑

G∈DAG
(nk,nk+1)⪯rl(G)

G(z, w)

 ,

where G(z, w) = zv(G)we(G)

(1+w)(
v(G)

2 )v(G)!
denotes the graphic generating function of the class consist-

ing of a single graph G. Note that only the last factor in the above expression depends on
nk+1, and the previous factors can be treated as constants. Thus

Pz,w[Nk+1 = nk+1|N1 = n1, . . . , Nk = nk] ∝
∑

G∈DAG
(nk,nk+1)⪯rl(G)

zv(G)we(G)

(1 + w)(
v(G)

2 )v(G)!
,

so the probability distribution does not depend on n1, . . . , nk−1 nor k, it only depends on
nk. ◀

Before determining the probability distribution of the sizes of consecutive sets in the
root-layering, we will calculate the probability distribution of the number of sources in a
random DAG.
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▶ Lemma 6 (Probability distribution of sources). The probability distribution of the number
of sources in a random directed acyclic graph drawn according to the Boltzmann model is
given by the formula

Pz,w[N1 = n] = zn

(1 + w)(
n
2)n!

Set
(
−(1 + w)−nz, w

)
.

Proof. The probability distribution of the number of sources can be obtained using formulas
(2) and (3) and the following derivation:

Pz,w[N1 = n] = [un] DAG(z, w, u)
DAG(z, w) = [un] Set((u− 1)z, w) = zn Set (−(1 + w)−nz, w)

(1 + w)(
n
2)n!

.◀

To complete the process of generating the root-layering, we need to determine the
transition matrix of the Markov chain.

▶ Lemma 7 (Transition matrix). The entries of the transition matrix describing the process
of generating consecutive set sizes in the root-layering are given by the following formula

Pz,w[N2 = n2|N1 = n1] = ((1− (1 + w)−n1)z)n2

(1 + w)(
n2
2 )n2!

Set(−(1 + w)−n2z, w)
Set(−(1 + w)−n1z, w) .

Proof. Let us note that the class of DAGs G following (n1, n2) ⪯ rl(G) can be obtained by
performing an arrow product on the class consisting of one empty graph with n1 vertices
and the class of all DAGs with n2 sources, and then replacing all combinations of edges
between the first two sets in a root-layering with all non-empty combinations of these edges.
With this observation, the transition matrix, which is the probability distribution of Nk+1
conditioned on the value of Nk for any k ≥ 1, can be calculated using the result of Lemma 6.

Pz,w[N2 = n2|N1 = n1] = Pz,w[N1 = n1, N2 = n2]
Pz,w[N1 = n1]

=

(
(1+w)n1 −1

(1+w)n1

)n2
zn1

(1+w)(
n1
2 )n1!

[un2 ] DAG(z, w, u)

Pz,w[N1 = n1] DAG(z, w)

= ((1− (1 + w)−n1)z)n2

(1 + w)(
n2
2 )n2!

Set(−(1 + w)−n2z, w)
Set(−(1 + w)−n1z, w) . ◀

Assume that the root-layering has already been generated. Now we need to draw edges
so that the properties presented in Theorem 4 are satisfied.

▶ Lemma 8 (Probability distribution of edges). Each edge between two non-consecutive sets
in the root-layering occurs independently of other edges with probability w

1+w . For each two
consecutive sets Vk, Vk+1 in the root-layering, the edges between Vk and any vertex v ∈ Vk+1
can be drawn with probability w

1+w until a combination of more than one edge is drawn.

Proof. Assume that we may already have drawn some edges in the generated graph. Let G
be the class of all graphs that may be generated from now on. Let e be a pair of vertices from
non-consecutive sets in the root-layering, such that we have not yet decided whether an edge
between those vertices should occur in the generated graph. Let Ĝ be the class of graphs
from G that contains the edge e. From (5), we know that the probability that e will occur in
the generated graph is Ĝ(z,w)

G(z,w) = w
1+w , which means that it is independent of the edges that
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have already been generated. Hence, each such edge can be generated independently with a
probability w

1+w .
Consider the edges between the vertices of some (not the last) set Vk of size n in the

root-layering and any vertex v ∈ Vk+1, and assume that we have not yet decided on the
presence of these edges in the generated graph. Fix some subset U ⊆ Vk of size j. Now let Ĝ
be the class of those graphs from G in which U is the set of all vertices from Vk connected to
the vertex v by an edge. By formula (5), the probability that the generated graph is one of
the graphs from Ĝ is Ĝ(z,w)

G(z,w) = wj

(1+w)n−1 . Again, this probability is independent of the edges
already generated. Moreover, wj

(1+w)n−1 is the probability of obtaining a fixed combination of
j successes in n Bernoulli trials with a probability of success w

1+w , conditional on at least
one success occurring. Therefore, we can sample the edges from the set Vk to the vertex v,
each with a probability w

1+w until some edge is present. ◀

The Algorithm 1 presents the complete process of generating a directed acyclic graph
from the Boltzmann model using root-layering decomposition.

Algorithm 1 Boltzmann sampler for DAGs based on the root-layering

1 function ΓDAG1(z, w)

2 draw n according to the distribution P[n] = zn

(1+w)(
n
2)n!

Set
(
− z

(1+w)n , w
)

3 create a set U of n vertices of a DAG
4 (V, E)← (∅, ∅)
5 while n ̸= 0 do
6 draw a number k according to the distribution

P[k|n] = ((1−(1+w)−n)z)k

(1+w)(
k
2)k!

Set(−(1+w)−kz,w)
Set(−(1+w)−nz,w)

7 create a set W of k vertices of a DAG
8 for v ∈W do
9 for u ∈ V do

10 add the edge (u, v) to E with probability w
1+w

11 repeat
12 A = ∅
13 for u ∈ U do
14 add the edge (u, v) to A with probability w

1+w

15 until A ̸= ∅
16 E ← E ∪A

17 (V, U, n)← (V ∪ U, W, k)
18 randomly relabel vertices in V

19 return (V, E)

▶ Lemma 9 (Correctness of Algorithm 1). Algorithm 1 is a Boltzmann sampler for directed
acyclic graphs.

Proof. It follows directly from the Lemmas 5-8. ◀

▶ Lemma 10 (Complexity of Algorithm 1). In order to produce a directed acyclic graph with n

vertices, Algorithm 1 performs a quadratic number of calls to the random number generator
and calculates the value of Set function O(n) number of times.
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Proof. For each edge, we draw a constant number of Bernoulli variables in expectation:
in the case of edges between vertices that lie in non-consecutive sets of root-layering,
exactly one Bernoulli variable is drawn,
in the case of edges between vertices that lie in consecutive sets Vk and Vk+1 of root-
layering, the number of Bernoulli variables drawn (conditioned on the cardinality of Vk)
follows a geometric distribution.

Since there are
(

n
2
)

possible edges in a DAG with n vertices, generating edges takes a quadratic
number of RNG calls on average.

Following [14, §5], we assume that the random variable with the outcome k is drawn with
the O(k) number of real-arithmetic operations. Since the generated DAG has n vertices,
the sum of the sizes of the generated layers is n1 + n2 + . . . = n, and the total number
of operations performed at line 2 and in all iterations of the while loop at line 6 by the
RNG (which is of the same order as the total number of calls to the Set() function) is of
O(n1 + n2 + . . .) = O(n).2 ◀

3.2 Boltzmann sampling via a peeling process
We now present an alternative approach to DAG sampling. This second approach is based on
a new recursive decomposition that can be expressed in terms of graphic generating functions
without resorting to inclusion-exclusion. A consequence of this property is that we can use
standard Boltzmann techniques in order to implement the sampler.

3.2.1 Peeling process
DAGs can be decomposed recursively via a peeling process: consider a specific source of the
DAG and split the DAG into two parts: the DAG induced by the vertices accessible from
our distinguished source and the DAG induced by the other vertices. Metaphorically, we
“peel-off” the part of the DAG that is not accessible from the distinguished source. This
is illustrated in Figure 3, and the meaning of the formulas in the figure is provided in the
combinatorial proof of Theorem 11 below.

▶ Theorem 11 (Peeling process). The graphic generating function of directed acyclic graphs
satisfies

u∂u DAG(z, w, u) = uz DAG
(

z

1 + w
, w, u

)
DAG

(
z, w,

w

1 + w

)
. (6)

Proof. Straightforward calculations yield

u∂u DAG(z, w, u) = uz
Set

(
(u−1)z

1+w , w
)

Set(−z, w) = uz
Set

(
(u−1)z

1+w , w
)

Set
(
− z

1+w , w
) Set

(
−z

1+w , w
)

Set(−z, w) .

And we conclude by observing that − 1
1+w =

(
w

1+w − 1
)
. ◀

Of course, Theorem 11 would be of little interest without a combinatorial interpretation.
We provide an alternative proof here that highlights its combinatorial meaning.

2 In fact, it can be shown that the probability P[k|n] at line 6 is bounded by c·dk

k!(1+w)(
k
2)

for suitable

constants c and d. This implies that the expected size of the number of vertices in a layer is bounded
by a constant.
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Combinatorial proof of Theorem 11. Let G be a DAG with a marked source v. It can be
decomposed as follows.

Denote by G2 the DAG induced by all the vertices that are reachable from the marked
source (by following the directed edges), excluding the marked source v.
Denote by G1 the DAG induced by all the other vertices excluding v.
The initial (marked) DAG is obtained as a special instance of the arrow product of the
three graphs {v}, G1, and G2 where some edges are forced and some are forbidden. More
specifically, G is obtained by performing the arrow product between G1 ∪ {v} and G2,
while ensuring that there is an edge from v to every source of G2. This way there is no
edge between v and G1 and all the vertices of G2 are reachable from v.

The composition z = z
1+w in the product uz DAG

(
z

1+w , w, u
)

captures the fact that there
is no edge between the isolated vertex v (modelled by uz) and the G1 component. More
eloquently, the division of z by (1 + w) means that we are “removing” one optional edge
(specified by (1 + w)) for every vertex in the G1 component, which corresponds exactly to
the optional edges encoded by the arrow product between uz and DAG(z, w, u). Similarly,
the composition u = w

1+w in the rightmost term of the equation represents the fact that for
every source of the G2 component, we must have an edge coming from v. Here again, the
division by (1 + w) inside the third argument of DAG represents that we are “removing” one
optional edge for each source, but then we multiply by w. So, at the level of the specification,
we replace every optional edge from v to a source by an obligatory one. ◀

uz

DAG
(

z
1+w , w, u

)
DAG

(
z, w, w

1+w

)G1 G2

v

Figure 3 The “peeling” recursive decomposition of directed acyclic graphs. The labels are omitted.
The marked source is the black vertex with the v label. Among the edges going from left to right,
those starting from the marked source and going to a source of the graph on the right are always
present and are depicted in thick orange, while all others are optional (depending on the initial
DAG) and are depicted by thinner grey lines.

From the combinatorial interpretation provided above, we can now reformulate equation 6
in a simple integral form:

DAG(z, w, u) = 1+H(z, w, u) DAG
(
z, w, w

1+w

)
with H(z, w, u) = z

∫ u

0
DAG

(
z

1+w , w, t
)
dt.

(7)

The effect of the integration on the combinatorial interpretation of this formula is that instead
of considering arbitrarily pointed sources as the starting point of our decomposition, we
choose the smallest of the sources. This is a classical application of the box product from [18,
§II.6.3], also used in [2] to enumerate increasing trees and in [4] to design Boltzmann samplers
for them. Combinatorially, the H-structures counted by the H function are the DAGs that
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can be obtained as the union of G1 and the isolated source v in the peeling process (see
Figure 3), but only when v has the smallest labels of all sources.

▶ Definition 12. An H-structure is a directed acyclic graph with a distinguished isolated
source that has the smallest label of all the sources in the graph.

The generation of H-structures is a central component of our peeling-based sampler.

3.2.2 Boltzmann sampler
First, by adapting the technique described in [4] for our use-case, we can describe how to
obtain a Boltzmann sampler of H-structures from a DAG sampler, here denoted by ΓDAG.
In a second step, we will demonstrate how to perform the converse and thus define the two
samplers in a mutually recursive fashion.

Algorithm 2 Boltzmann sampler of H-structures

1 function ΓH(z, w, u)
2 x← uniform real number in [0; 1)
3 compute the unique 0 ≤ t ≤ u such that Set((t−1)z,w)−Set(−z,w)

Set((u−1)z,w)−Set(−z,w) = x

4 G1 ← ΓDAG( z
1+w , w, t)

5 H ← G1 ∪ {a fresh isolated vertex v}
6 choose a uniform label for v and relabel G1 accordingly
7 perform a cyclic permutation of the labels of the sources of H so that v has the

smallest one
8 return H

▶ Lemma 13 (Correctness of Algorithm 2). If ΓDAG implements the Boltzmann model on
directed acyclic graphs, then Algorithm 2 implements the Boltzmann model on H. More
precisely,

P [ΓH(z, w, u) = H] = zv(H)we(H)us(H)

n!(1 + w)(
n
2)H(z, w, u)

·

In fact, as shall be clear from the proof below, it suffices that ΓDAG implements the
Boltzmann model correctly on DAGs of size (n− 1) to show that ΓH produces H-structures
of size n with the correct distribution. This observation will allow us to use Lemma 13 as a
template for proving the correctness of Algorithm 3 which is defined in a mutually recursive
fashion with Algorithm 2.

Proof. Consider an H-structure H, denote by v its distinguished isolated source, and let n,
m, and k denote its number of vertices, edges and sources. Because of the way we make v

the source with the smallest label at line 7, if H has k sources in total, there are exactly k

ways that Algorithm 2 can produce H, one for each cyclic permutation on its sources3.
Let H(1), H(2), . . . , H(k) denote the k graphs that can be obtained by performing a cyclic

permutation of the labels of the sources of H, and for all 1 ≤ i ≤ k, let G
(i)
1 denote the graph

obtained by removing the distinguished isolated source from H(i).

3 This cycle trick ensures that v is the source with the smallest label, while avoiding any bias. This is
reminiscent from the cycle lemma used, for instance, for Dyck path enumeration [15]
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In order to produce exactly H, the function ΓH(z, w, u) thus has to draw one of the G
(i)
1

at line 4 and then choose the unique label (with probability 1/n) that allows going from G
(i)
1

to H after the cyclic relabelling. This probability can be expressed as

P[ΓH(z, w, u) = H] =
k∑

i=1

∫ 1

0
P

[
ΓDAG

(
z

1 + w
, w, t(x)

)
= G

(i)
1

]
1
n

dx

where t(x) is defined as in line 3 of the algorithm. Assuming that ΓDAG implements the
Boltzmann distribution, the above formula can be rewritten as

zn−1wm

(n− 1)!(1 + w)(
n−1

2 )+(n−1)

k∑
i=0

∫ 1

0

t(x)k−1dx

DAG
(

z
1+w , w, t(x)

) ·
By the change of variable t = t(x), we get that dx = z Set((t−1) z

1+w ,w)dt

Set((u−1)z,w)−Set(−z,w) so that we have

P[ΓH(z, w, u) = H] = znwmuk

n!(1 + w)(
n
2)

Set(− z
1+w , w)

Set((u− 1)z, w)− Set(−z, w)

and it can be checked, for instance, using equation (4) for integrating the Set function, that

H(z, w, u) = Set((u− 1)z, w)− Set(−z, w)
Set(− z

1+w , w)

which concludes the proof. ◀

Equipped with a template for sampling H-structures, it is now straightforward to derive
a sampler for DAGs from equation (7), which we describe in Algorithm 3. Note that ΓH
must use ΓDAG2 internally here, so that both functions are mutually recursive.

Algorithm 3 Boltzmann sampler for DAGs based on the peeling process

1 function ΓDAG2(z, w, u)
2 if Bernoulli(1/ DAG(z, w, u)) then
3 return the empty graph
4 else
5 H ← ΓH(z, w, u)
6 G2 ← ΓDAG2(z, w, w

1+w )
7 G← H ∪G2, relabel accordingly
8 foreach pair of vertices (v1, v2) in H ×G2 do
9 if v1 is the distinguished source of G and v2 is a source of G2 then

10 add an edge from v1 to v2
11 else
12 add an edge from v1 to v2 with probability w/(w + 1)
13 return G

▶ Lemma 14 (Correctness of Algorithm 3). Algorithm 3 is a Boltzmann sampler for directed
acyclic graphs.

Proof. For any z, w, u > 0 such that DAG(z, w, u) converges, and for any DAG G, we
denote by Pz,w,u[G] the probability that Algorithm 3 terminates and returns G. We
prove by induction on n that for all G ∈ DAG with n vertices and whenever this is
well-defined, Pz,w,u[G] = (1 + w)−(n

2) znwe(G)us(G)

n! DAG(z,w,u) . The termination of the algorithm follows
from the fact that these probabilities sum to 1.
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Base case We have that Pz,w,u[∅] = 1/ DAG(z, w, u).
Induction Let G be a DAG with n > 0 vertices, including k sources and m edges. Let v

denote the source of the smallest label in G, and let G2 denote the graph induced by
the vertices reachable from v (excluding v). The graph induced by all other vertices
(including v) thus forms an H-structure H.
Assuming that the call to ΓH at line 5 and the recursive call at line 6 return exactly H

and G2, the probability that the subsequent lines produce exactly G is

Pfinish := v(H)!v(G2)!
n! · wm−e(H)−e(G2)−s(G2)

(1 + w)v(H)v(G2)−s(G2)

where the first fraction accounts for the probability of choosing the right relabelling,
and the second fraction quantifies the probability of drawing the correct edges from H

to G2 in order to obtain exactly G4. By induction, the recursive call to ΓDAG2 hidden
inside ΓH at line 5 and the recursive call at line 6 implement the Boltzmann model on
DAGs, so that ΓH implements the Boltzmann model on H-structures, and we have

Pz,w,u[G] =
(

1− 1
DAG(z, w, u)

)
PH,z,w,u[H] · Pz,w, w

1+w
[G2] · Pfinish

=
(

1− 1
DAG(z, w, u)

)
znwmuk

n!(1 + w)(
n
2)

1
H(z, w, u) DAG(z, w, w

1+w )

= znwmuk

n!(1 + w)(
n
2) DAG(z, w, u)

· ◀

We express the complexity of Algorithm 3 in terms of the number of calls to the random
number generator and the number of times we need to solve the equation inside the call
to ΓH. The rest of the algorithm only consists of building the output graph, which is clearly
linear in the size of the output5.

▶ Lemma 15 (Complexity of Algorithm 3). In order to produce a directed acyclic graph with n

vertices, Algorithm 3 performs a quadratic number of calls to the random number generator
and solves the system at line 3 in Algorithm 2 exactly n times.

Proof. For each vertex that we build, we have to draw a Bernoulli variable beforehand (at
line 2 and then a uniform real number x before solving the equation at line 3 in Algorithm 2).
This incurs exactly 2n calls to the RNG and n solves. Moreover, we have to draw several
Bernoulli variables in order to decide which edges to add or not in the foreach loop. This
incurs at most

(
n
2
)

RNG calls: one for each possible pair of vertices. ◀

4 Exact size sampling

Both approaches presented above are amenable to quadratic-time exact-size sampling via
rejection. Using the rejection principle to derive exact-size samplers is natural in the context
of Boltzmann sampling, though it is generally inefficient. In our case, we can still achieve
good performance due to a shared feature of the two algorithms: we can postpone the
generation of the edges. An alternative approach to exact-size sampling that is permitted by

4 Note that this is reminiscent of equation (5) on page 5
5 Note that if the output has n vertices, it has m = Θ(n2) edges, so “linear” actually means O(m) in this

context.
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the peeling process is to resort to a trick known as “leapfrogging”. This technique, described
in [14, §7.1], leverages the properties of super-critical sequences in order to derive a fast
algorithm in this specific case. Both approaches are presented below.

4.1 Rejection sampling
Here, the rejection method involves generating DAGs until a graph with the desired number
of vertices is obtained. We can tune our algorithms to be more efficient for such generation.
First, the only process we need to repeat is the generation of a graph skeleton without
edges, as this is the part that establishes the number of vertices. In cases where we already
know that the number of vertices will be greater than what we require, we can interrupt
the process of generating the graph skeleton and start it over. Edge sampling occurs after
skeleton sampling.

Fix the parameter w (choose w = 1 for the uniform generation of DAGs with the same
number of vertices). Suppose that we want the generated graph to have exactly n vertices,
and we use the rejection method, i.e. we choose a random graph until there are exactly n

vertices. For this method to be efficient, the probability of drawing a graph with n vertices
should be as high as possible. Hence, we are looking for the zn parameter that maximises
the value

P[v(ΓDAG(zn, w)) = n] = [tn]DAG(znt, w)
DAG(zn, w) .

It is a well known fact in Boltzmann sampling that this parameter ensures that the expected
size of the generated structures is equal to n, so zn can be calculated by solving the following
formula

n = E[v(ΓDAG(zn, w))] = zn∂z DAG(zn, w)
DAG(zn, w) .

The derivative of the function DAG(z, w) can be easily computed from equations (3) and (4),
which yields

n = zn∂z DAG(zn, w)
DAG(zn, w) = zn Set (−zn/(1 + w), w)

Set(−zn, w) . (8)

Solving the equation for zn can be accomplished using numerical methods.
Now, we would like to know how many iterations of the rejection sampler are needed, on

average, to produce a random DAG with n vertices. First, we need to obtain an asymptotic
formula for [zn] DAG(z, w). In [43] it was shown that the function f(z) =

∑
n≥0 q(n

2) zn

n! for
q ∈ (0, 1) has infinitely many zeros, all of which are real and negative. Let ρw be the least
zero of the function f(−z) for q = 1

1+w , which is the least zero of the function Set(−z, w)
(ρ1 ≈ 1.4880785). Then ρw is the radius of convergence of the function DAG(z, w). It can
be shown that DAG(z, w) has a simple pole at z = ρw, and using Theorem IV.10 from [18],
that

[zn] DAG(z, w) n→∞∼ 1
ρw Set(−ρw/(1 + w), w)

1
ρn

w

. (9)

From (4) we have

Set(−zn, w) n→∞∼ (zn − ρw)∂z Set(−zn, w) = (ρw − zn) Set(−zn/(1 + w), w) ,
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and therefore, using (8), we obtain

n = zn Set(−zn/(1 + w), w)
Set(−zn, w)

n→∞∼ ρw

ρw − zn
. (10)

Finally, from the above equations (9) and (10), we get

P[v(ΓDAG(zn, w)) = n] = zn
n [tn] DAG(t, w)
DAG(zn, w)

n→∞∼ Set(−zn, w)
ρw Set(−ρw/(1 + w), w)

(
zn

ρw

)n
n→∞∼ 1

n

(
1− ρw − zn

ρw

) ρw
ρw−zn n→∞∼ 1

e · n
.

Hence, since the number of rejection sampler iterations has a geometric distribution with a
probability of success asymptotically 1

e·n , the average number of these iterations approaches
e · n, making it linear with respect to n.

4.2 Leapfrogging
We proved that rejection sampling with our Boltzmann samplers achieves O(n2) exact size
sampling. We can actually go further and optimise the constant hidden in the big-O using a
technique called leapfrogging.

4.2.1 Leapfrogging in a nutshell
In the paper [14] where the framework of Boltzmann sampling is introduced for the first
time, the authors note in Section 7.1 a seemingly anecdotal case where the method proves to
be especially powerful. When the combinatorial objects to be sampled admit a specification
of the form A = Seq(B) where the generating function B(z) of B is larger than 1 near
its dominant singularity, the sequence is called supercritical. In this case, the generating
function A(z) of A admits a simple pole ρ where B(ρ) = 1 and B(z) is analytic in a
neighbourhood of ρ. This allows us to show that a large A structure in the Boltzmann model
is composed of a long sequence of small B structures; however, it goes further than this.
Indeed, although the Boltzmann model is not well defined at z = ρ (because A(ρ) =∞), we
can still define an early-interrupt “critical” Boltzmann sampler by generating a sequence of B
structures with parameter ρ and halting as soon as a target size is attained. The authors
refer to this as the “leapfrogging” principle. This is described in Algorithm 4.

Algorithm 4 The leapfrogging algorithm for A = Seq(B)

1 function Γfrog(n)
2 repeat
3 S ← empty sequence
4 while

∑
b∈S |b| < n do

5 b← ΓB(ρ)
6 append b to S

7 until until
∑

b∈S |b| = n

8 return S

Note that the original paper [14] has a slightly more general presentation that enables
approximate-size sampling, however, we chose to focus on exact-size sampling only here.
Algorithm 4 has a remarkable property. Since the “leaps” — the B-structures generated at
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each iteration — are small, the probability that the generated sequence inside the repeat
block has size exactly n is actually a non-zero constant, even when n→∞. As a consequence,
the algorithm succeeds in generating an A structure of size n after only O(1) rejections. That
is the idea that we leverage here to achieve optimal exact-size sampling of DAGs.

4.2.2 A sequential specification of DAGs
Recall that the peeling process described in Theorem 11 peels off an H-structure (by removing
all vertices that are not reachable from the smallest source) and leaves us with a smaller
DAG. We can actually repeat this process on the resulting DAG, which yields the following
alternative formulation.

▶ Lemma 16 (Sequential decomposition). The graphic generating function of directed acyclic
graphs satisfies

DAG(z, w, u) = 1 + H(z, w, u)
1−H

(
z, w, w

1+w

)
Proof. When substituting u = w

1+w in (7), we get

DAG
(

z, w,
w

1 + w

)
= 1+H

(
z, w,

w

1 + w

)
DAG

(
z, w,

w

1 + w

)
= 1

1−H
(

z, w, w
1+w

) ·◀
This new expression allows the familiar pseudo-inverse operation on series to appear, which
is naturally interpreted as a sequence of H-structures. It is worth noting, though, that this
sequence differs slightly from the usual notion of a sequence: here, there is an arrow product
between each H-structure and all the following ones, and some of the edges are forced. This
sequential decomposition, or iterated peeling process, is illustrated in Figure 4.

H(z, w, u) H
(
z, w, w

1+w

)
H

(
z, w, w

1+w

)
H

(
z, w, w

1+w

)
· · ·

Figure 4 Iterated peeling process. Labels are omitted. At each decomposition step, the smallest
of the sources is selected and the vertices that are not accessible from this source are peeled off,
as well as the selected source. This process is iterated until the remaining DAG is empty. The H
structures are the union of the DAG component with the isolated vertex at each step.

4.2.3 Leapfrogging for DAGs
The sequential decomposition from Lemma 16 is amenable to leapfrogging because of the
following observation. Regardless of the value of u ∈ (0; 1], the function H(z, w, u) is analytic
in the domain |z| < (1+w)ρw, which contains ρw. It follows that the sequence is super-critical
and that H

(
ρw, w, w

1+w

)
= 1. Although the sequence in our case is not a sequence in the



XX:18 Boltzmann sampling and optimal exact-size sampling for directed acyclic graphs

same sense as in [14], the same ideas apply, and one can obtain a leapfrogging algorithm for
DAGs by drawing sequences of H-structures until we find one of total size exactly n. Note
that in our case, all leaps but the first one must be drawn with parameter u = w

1+w .
Note that the leapfrogging idea is generic in terms of which algorithm is used to generate

the leaps, as long as it implements the Boltzmann model on H. In Algorithm 5, ΓH can use
either of our two algorithms under the hood to generate DAGs.

Algorithm 5 Exact-size sampler of DAGs. The special symbol ⊥ symbolises a failure.

1 function UnifDAG(n)
2 repeat
3 S ← new sequence containing one graph drawn from ΓH(ρ1, 1, 1)
4 while

∑
H∈S v(H) < n do

5 append a new ΓH(ρ1, 1, 1
2 ) to S

6 until
∑

H∈S v(H) ̸= n

7 shuffle the labels of the different leaps
8 add edges between each leap and its following leaps as in Algorithm 3
9 return the resulting DAG

An important optimisation here is that we wait to find a correct sequence of H-structures
before actually connecting the various components together. This allows to lower the
complexity of this algorithm because most of the computational cost lies in this second phase:
it generates Θ(n2) edges by drawing about n2

2 Bernoulli variables and performing Θ(n2)
memory accesses to store those edges.

▶ Lemma 17 (Correctness of Algorithm 5). The function UnifDAG from Algorithm 5, when
called with parameter n returns a uniform directed acyclic graph with n vertices.

Proof. We first express the probability Pwhile[S] that a given sequence S = (H1, H2, . . . , Hj)
of H-structures, of total size n > 0, is produced by the while loop. By the definition of the
Boltzmann model on H, this probability is given by

Pwhile[S] = ρn1
1

n1!2(n1
2 )H(ρ1, 1, 1)

j∏
i=2

ρni
1 ( 1

2 )ki

ni!2(ni
2 )H(ρ1, 1, 1

2 )
= ρn

1 2−
∑j

i=2
ki−

∑j

i=1 (ni
2 )

H(ρ1, 1, 1)
∏j

i=1 ni!

where ni and ki denote the number of edges and sources of the i-th term of the sequence.
Of course, the while loop can fail to produce a sequence of total size n, so the probability
Prepeat[S] that the repeat block yields a specific sequence S by rejection is given by

Prepeat[S] = Pwhile[S]∑
S′ of total size n Pwhile[S′] = H(ρ1, 1, 1)Pwhile[S]

ρn
1 [zn] H(z,1,1)

1−H(z,1,
1
2 )

= H(ρ1, 1, 1)Pwhile[S]
ρn

1 [zn] DAG(z, 1, 1) ·

Finally, in order for the leapfrogging algorithm to produce a specific DAG G, it first has to
produce the exact sequence S arising from the peeling process in the rejection phase, and
then shuffle the labels and generate the edges in the unique way that corresponds to G. This
happens with probability

Prepeat[S] ·
(

n

n1, n2, . . . , nj

)−1
· 2−

∑
i+2≤i′ nini′ · 2−

∑j−1
i=1

nini+1−ki+1

= 1
n!2(n

2)
1

[zn] DAG(z, 1, 1) · ◀
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As discussed above, the leapfrogging approach enables the quick generation of a structure
of exact size n. In our case, because the majority of the computational cost of generation
lies in the edges between the layers, this implies that we obtain an optimal sampler.

▶ Lemma 18 (Complexity of Algorithm 5). In order to generate a uniform directed acyclic
graph of size n, Algorithm 5 performs a O(n) number of system inversion (in the ΓH function)
and uses n2

2 + o(n2) random bits in average.

Proof. As in the proof of Lemma 15, the number of system inversions is clearly equal to n.
From the proof of Lemma 17, one can compute that the probability that the while loop
successfully produces a sequence of total size n is

ρn
1 [zn] DAG(z, 1, 1)

H(ρ1, 1, 1) = ρn
1 [zn] DAG(z, 1, 1) Set(−ρ1

2 , 1) →
n→∞

ρ−1
1 ≈ 0.672.

Furthermore, because the sequence is super-critical, every leap in the sequence is, on average,
of constant size. It follows that the total cost of generating the edges inside the leaps during
the rejection phase is linear in n.

Since the final stage of the algorithm consists of generating
(

n
2
)
−O(n) Bernoulli variables

with parameter 1
2 , it costs exactly

(
n
2
)
−O(n) random bits, which dominates the cost of the

rejection phase. ◀

5 Implementation considerations

Evaluating the Set(z, 1) function with high precision is efficient in practice due to its fast
convergence. Our implementation [20] of the algorithms relies on floating-point arithmetic,
which is generally assumed to be adequate for the practical implementation of Boltzmann
samplers. Of course, a more precise implementation with arbitrary precision that keeps
track of numerical errors is also possible and will not impact the complexity of our samplers,
as most of their computational cost lies in the generation of Bernoulli( 1

2 ) variables for
connecting edges.

Furthermore, for both the rejection sampler and the leapfrogging algorithm, a fast
implementation should allocate the DAG only once and perform the rejection phase in place
to further minimise the cost of rejection.

As a final remark, it must be noted that Algorithm 3 is not tail-recursive. It is thus
suitable for small size sampling, such as for the generation of the leaps in Algorithm 5, but it
might not be appropriate for the rejection approach presented in Section 4.1 in its current
form.

6 Conclusion and perspectives

The present paper extends the framework of Boltzmann sampling to digraph families and
showcases its effectiveness by providing Boltzmann samplers for DAGs. Building on top of
these samplers, we also provide an optimal exact-size sampler for DAGs, thus closing the gap
between available samplers and the theoretical complexity lower bound given by the entropy.
At a more fundamental level, we also present a new decomposition scheme that is amenable
not only to random generation but also to analytic combinatorics techniques.

The reader may have noticed that another DAG decomposition might be obtained by dif-
ferentiating the DAG(z, w, u) function with respect to z. Additionally, other decompositions
that are not a direct consequence of the graphical generating function of DAGs (as in the
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case of root-layering decomposition) can be found. With the approach presented here, they
can be used to build different DAGs samplers. However, it is worth noting that not all of
them satisfy the sequential decomposition schema (see Lemma 16), which is key to applying
the leapfrogging idea to create an asymptotically optimal DAGs sampler. Nevertheless, these
alternative specifications are still worthy of interest. In particular, Boltzmann samplers have
been used to study the probabilistic aspects of generated graph parameters (see [34, 33, 13]).
Therefore, the next natural step would be to use the samplers presented in this paper, along
with other samplers employing the aforementioned specifications, to obtain novel information
about the probability distribution of various parameters of DAGs.

Finally, an analysis of the graphic generating functions for various classes of digraphs was
presented in the work of Dovgal, de Panafieu, Ralaivaosaona, Rasendrahasina, Wagner [12].
Therefore, our graphic Boltzmann model and the approach presented for creating efficient
random DAGs generators can be applied to build samplers for these other classes of digraphs.
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