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Abstract

Directed acyclic graphs (DAGs) are directed graphs in which there is no path
from a vertex to itself. DAGs are an omnipresent data structure in computer science
and the problem of counting the DAGs of given number of vertices and to sample
them uniformly at random has been solved respectively in the 70’s and the 00’s. In
this paper, we propose to explore a new variation of this model where DAGs are
endowed with an independent ordering of the out-edges of each vertex, thus allowing
to model a wide range of existing data structures.

We provide efficient algorithms for sampling objects of this new class, both with
or without control on the number of edges, and obtain an asymptotic equivalent of
their number. We also show the applicability of our method by providing an effective
algorithm for the random generation of classical labelled DAGs with a prescribed
number of vertices and edges, based on a similar approach. This is the first known
algorithm for sampling labelled DAGs with full control on the number of edges, and
it meets a need in terms of applications, that had already been acknowledged in the
literature.

Mathematics Subject Classifications: 05A15, 05A16, 05C20, 05C30, 68R05

1 Introduction

Directed Acyclic Graphs (DAGs for short) are directed graphs in which there is no directed
path (sequence of incident edges) from a vertex to itself. They are an omnipresent data
structure in various areas of computer science and mathematics. In concurrency theory for
instance, scheduling problems usually define a partial order on a number of tasks, which
is naturally encoded as DAG via its Hasse diagram [6, 4]: each task corresponds to a
vertex in the graph and task dependencies are materialised by directed edges. Scheduling
then corresponds to finding a good topological order on this graph. Natural question
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such as counting or sampling the schedulings of a program are studied in this context for
the purpose of random testing [23]. DAGs also appear as the result of the compression
of some tree-like structures such as XML documents [3]. In functional programming in
particular, this happens at the memory layout level of persistent tree-like values, where
the term “hash-consing” has been coined to refer to this compression [22]. Computer
algebra systems also make use of this idea to store their symbolic expression [13]. These
tree use cases leverage the fact that actual memory gains can be obtained by compacting
trees, which has been quantified in [16] and has motivated the study of compacted trees in
the recent years [12, 21]. Finally, complex histories, such as those used in version control
systems (see Git for instance [17, p. 17]) or genealogy “trees” are DAGs as well.

Most of the applications presented here actually require to add some more structure
on the space of DAGs in order to faithfully model the objects at play, which is the main
motivation of the present article. We first give some background on the combinatorics of
DAGs and then expand on our contributions.

1.1 Background on DAGs

Two different models of DAGs have received a particular interest: labelled DAGs and
unlabelled DAGs. The most obvious one is the labelled model, in which one has a set V
of vertices (often J1;nK) connected by a set of edges E ⊆ V × V . The term labelled is
used because the vertices can be distinguished here, they can be assigned labels. On the
other hand, unlabelled DAGs are the quotient set obtained by considering labelled DAGs
up to relabelling, that is to say up to a permutation of their vertices (which is reflected
on the edges). These two types of objects serve a different purpose, the former represents
relations over a given set whereas the latter represents purely structural objects. From a
combinatorial point of view, a crucial difference between the two models is that one has
to deal with symmetries when enumerating unlabelled DAGs which makes the counting
and sampling problem significantly more involved.

Counting The problem of counting DAGs has been solved in early 70’s by Robinson and
Stanley using different approaches. In [38], Robinson exhibits a recursive decompositions
of labelled DAGs leading to a recurrence satisfied by the numbers An,k of DAGs with n
vertices including k sources (vertices without any incoming edge). He later reformulates
those results in terms of a new kind of generating functions, now called graphical generating
functions in [36], and also obtains the asymptotic number of size n DAGs. Around
the same time, Stanley also used a generating function approach in [41] obtained the
same results by deriving identities of the chromatic polynomial. Robinson also solves
the unlabelled case starting from the same ideas but using Burnside’s lemma and cycle
index sums to account for the symmetries of these objects. He provides a first solution
in [38] and makes it more computationally tractable in [37]. In the 90’s, Gessel generalised
those results, also using the graphical generating function framework in [20, 19] to take
into account more parameters and count DAGs by vertices and edges, but also sinks and
sources.
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Random sampling From the point of view of uniform random generation, the recursive
decomposition exhibited by Robinson in [36] is interesting as it is amenable to the recursive
method pioneered by Nijenhuis and Wilf in [35]. This yields a polynomial time algorithm
for sampling uniform DAGs with n vertices. The analysis of this algorithm has been
done in [31] but it had been acknowledged earlier in [34] although the article proposes
an alternative solution. Both [31] and [34] also offer a Markov chain approach to the
random sampling problem and an interesting discussion on the pros and cons of both
approaches is given in [31]. Remote from the field of combinatorics, the random generation
of DAGs is also an active topic in the area of applied statistics and Bayesian inference.
In this context, DAGs encode a relevant structure in a collection of random variables
and the problem of interest is to sample DAGs from a particular distribution related to
those random variables. To this end, authors resort both to Monte Carlo Markov Chains
approaches [32, 30] and methods similar to what is referred to as the recursive method
in combinatorics [43]. An important point in [30] is better performance can be achieved
by using a combination of both approaches, in particular by exploiting the combinatorial
properties of DAGs. Notable is that sampling from the uniform distribution is tackled as
a particular case in [43] and solved with the asymptotically optimal O(n2) complexity at
the expense of a O(n3) pre-processing step.

Unfortunately, to our knowledge, no efficient uniform random generator of unlabelled
has been found yet. Moreover, unlike in the labelled case, the method derived by Robinson
to exhibit the number of unlabelled DAGs cannot be easily leveraged into a random
sampler as they make extensive use of Burnside’s lemma.

Another interesting question is that of controlling the number of edges in those random
samplers. Indeed, sampling a uniform DAG with a prescribed number of vertices and
edges cannot be achieved using the Markov chain approach as it constrains the chain too
much, and the formulas of Gessel are not amenable to this either. In [31, § 7], the authors
provide an interesting discussion on which kind of restrictions can be made on DAGs
with the Markov chain approach. They address in particular the case of bounding the
number of edges and highlight that the Monte Carlo Markov Chain approach fails when
the desired number of edges is too low, thus advocating for having precise combinatorial
enumerations.

1.2 Contributions

In the present paper, we propose to study an alternative model of DAGs, which we
call Directed Ordered Acyclic Graphs (DOAGs), and which are enriched with additional
structure on the edges. More precisely, a DOAG in an unlabelled DAG where (1) set of
outgoing edges of each vertex is totally ordered and (2) the sources are totally ordered
as well. This local ordering of the outgoing edges allows to capture more precisely the
structure of existing mathematical objects. For instance, the compressed formulas and
tree-like structures mentioned earlier (see [13, 22]) indeed present with an ordering as
soon as the underlying tree representation is ordered. This is the case for most trees used
in computer science (e.g. red-black trees, B-trees, etc.) and for all formulas involving non-
commutative operators. The model we introduce thus allows for a more faithful modelling
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of a wide range of objects. We present here several results regarding DOAGs, as well as
an extension of our method to classical labelled DAGs.

As a first step of our analysis, we describe a recursive decomposition scheme that allows
us to study DOAGs using tools from enumerative combinatorics. This allows us to obtain
a recurrence formula for counting them, as well as a polynomial-time uniform random
sampler, based on the recursive method from [35], giving full control over their number
of vertices and edges. Our decomposition is based on a “vertex-by-vertex” approach,
that is we remove one vertex at a time and we are able to describe exactly what amount
of information is necessary to reconstruct the graph. This differs from the approach of
Robinson to study DAGs, where all the sources of a DAG are removed at once instead.
Although this is a minor difference, our approach allows us to easily account for the
number of edges of the graph, which is why our random sampler is able to target DOAGs
with a specific number of edges. In terms of application, this means that we are able to
efficiently sample DOAGs of low density. A second by-product of our approach is that it
makes straightforward to bound the out-degree of each vertex, thus allowing to sample
DOAGs of low degree as well.

In order to show the applicability of our method, we devise a similar decomposition
scheme for counting labelled DAGs with any number of vertices, edges, and sources. This
allows us to transfer our results on DOAGs in the context of labelled DAGs. Our new
recurrence differs from the formula of Gessel [19] in that it does not resort to the inclusion-
exclusion principle. Our approach allows us to obtain an efficient uniform random sampler
of labelled DAGs with a prescribed number of vertices, edges, and sources. Here again, in
addition to giving control over the number of edges of the produced objects, our approach
can also be adapted to bound the out-degree of their vertices. To our knowledge, this is
the first such sampler.

Finally, in a second part of our study of DOAGs, we focus on their asymptotic be-
haviour and get a first result in this direction. We consider the number Dn of DOAGs
with n vertices, one source, and any number of edges, and we manage to exhibit an
asymptotic equivalent of an uncommon kind:

Dn ∼ c · n−1/2 · en−1

n−1∏
k=1

k! for some constant c > 0.

In the process of proving this equivalent, we state an upper bound on Dn by exhibiting
a super-set of the set of DOAGs of size n, expressed in terms of simple combinatorial
objects: variations. This upper-bound is close enough to Dn so that we can leverage it
into an efficient uniform rejection sampler of DOAGs with n vertices and any number
of edges. Combined with an efficient anticipated rejection procedure, allowing to reject
invalid objects as soon as possible, this lead us to an asymptotically optimal uniform
sampler of DOAGs of size n.

In terms of applications, our random generation algorithms enable to experiment with
the properties of the objects they model and with the average complexity of algorithms
operating on them. A similar approach is for instance taken in [8] where samplers for a
realistic class of Git graphs are developed in order to tackle the average complexity of

the electronic journal of combinatorics 30 (2023), #P00 4



a new algorithm introduced in [33, 7]. Random testing a also an important application
of random sampling, especially as a building block for property-based testing, a now
well-established framework pioneered Claessen and Hughes in [5].

This paper extends an earlier article [18] with new results on the asymptotics of
DOAGs, with an optimal uniform random sampler for the case when the number of edges
is not prescribed, and covers a larger class of DOAGs and DAGs by drooping a constraint
on the number of sinks. For the sake of completeness, the most important results and
ideas from [18] will be recalled in the present paper, but the reader will have to refer the
earlier article to get the full proof and algorithmic details.

1.3 Outline of the paper

In Section 2, we start by introducing the class of Directed Ordered Acyclic Graphs and
their recursive enumeration and describe a recursive decomposition scheme allowing to
count them. In Section 3, we quickly go over earlier results regarding the random genera-
tion of DOAGs with a prescribed number of vertices, edges, and sources. The presentation
given in this paper slightly generalises over the algorithm given in [18] but the ideas and
proofs remain unchanged. Section 4 shows that our approach applies to labelled graphs
as well and opens the way for further research regarding this class. We show that our
method, when applied to labelled DAGs, yields a constructive counting formula for them,
that is amenable to efficient uniform random generation with full control on the number
of edges. Then, in Section 5, we present a bijection between DOAGs and class of integer
matrices. This bijection is the key result of this paper as it allows to understand the
structure of DOAGs in detail, and to obtain both asymptotic and algorithm results in the
following sections. In Section 6, we present a first asymptotic result: we give an asymp-
totic equivalent of the number of DOAGs of size n with any number of sources and edges.
We also state some simple structural properties of those DOAGs. In light of the matrix
encoding and these asymptotic results, we design an optimal uniform random sampler of
DOAGs with a given number of vertices (but no constraint on the number of edges), that
is described in Section 7.

An implementation of all the algorithms presented in this paper is available at https:
//github.com/Kerl13/randdag.

2 Definition and recursive decomposition

In this section, we recall a model of directed acyclic graphs called “Directed Ordered
Acyclic Graphs” (or DOAGs) that we introduced in [18]. It is similar to the classical
model of unlabelled DAGs but where, in addition, we have a total order on the outgoing
edges of each vertex. The presentation we opted for here slightly differs from that of [18]
but essentially defines the same objects, the only difference being that we now allow
several sinks for the sake of generality.
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Definition 1 (Directed Ordered Graph). A directed ordered graph (or DOG for short)
is a triple (V,E, (≺v)v ∈V ∪{⊤}) where:

� V is a finite set of vertices;
� E ⊂ V × V is a set of edges;
� for all v ∈ V , ≺v is a total order over the set of outgoing edges of v;
� and ≺⊤ is a total order over the set of sources of the graph, that is the vertices
without any incoming edge.

Two such graphs are considered to be equal if there exists a bijection between their
respective sets of vertices that preserves both the edges and the order relations ≺v and ≺⊤.

Definition 2 (Directed Ordered Acyclic Graph). A directed ordered acyclic graph (or
DOAG for short) is a directed ordered graph (V,E, (≺v)v ∈V ∪{⊤}) such that (V,E), seen
as a directed graph, is acyclic.

We study this class as a whole, however, some sub-classes are also of special interest,
in particular for the purpose of modelling compacted data structures. Tree structures
representing real data, such as XML documents for instance [3], are rooted trees. When
these trees are compacted, the presence of a root translates into a unique source in the
resulting DOAG. Similarly, DOAGs with a single sink will arise naturally when compact-
ing trees which bear a single type of leaves. In particular the model of compacted binary
trees, which can also be seen as a class of cycle-free binary automata, has been shown
have unusual combinatorial properties in [11, 12] and corresponds to a restriction of our
model with only binary nodes (and one sink). For these reasons, we will also discuss how
to approach the sub-classes of DOAGs with a single source and/or a single sink in this
document.

In order to illustrate the definition, the first line of Figure 1 depicts all the DOAGs
with at most 3 vertices and the second line shows all the DOAGs with exactly 4 vertices
and 3 edges. There are 17 of them while there are 95 DOAGs with 4 vertices in total.

2.1 Recursive decomposition

We describe a canonical way to recursively decompose a DOAG into smaller structures.
The idea is to remove vertices one by one in a deterministic order, starting from the
smallest source (with respect to their ordering ≺⊤). Formally, we define a decomposition
step as a bijection between the set of DOAGs with at least two vertices and the set of
DOAGs given with some extra information.

Let D be a DOAG with at least 2 vertices and consider the new graph D′ obtained
from D by removing its smallest source v and its outgoing edges. We need to specify
the ordering of the sources of D′. We consider the ordering where the new sources of D′

(those that have been uncovered by removing v) are considered to be in the same order
(with respect to each other) as they appear as children of v and all larger than the other
sources. The additional information necessary to reconstruct D from D′ is the following:

1. the number s ⩾ 0 of sources of D′ which have been uncovered by removing v;
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1 1 2

1 vertex

1

2 vertices

1

3 vertices

1 1 1 1 2 1 2 1 2 1 2 3

1 1 1 1 1

1 2 1 2 1 2

1 2 1 2 1 2 1 2

21 1 2 1 2 1 2

4 vertices and 3 edges, grouped by number of sources

1 2 3

1 2 3 . . .

Symbols

sources ordering

out-edges
ordering

Figure 1: All DOAGs with respectly 1 vertex, 2 vertices, 3 vertices, and simultaneously 4
vertices and 3 edges. All edges are implicitly oriented from top to bottom, the blue labels
and arrows represent the sources and out-edges orderings (always from left to right).

2. the (possibly empty) set I of internal (non-sources) vertices of D′ such that there
was an edge in D from v to them;

3. the function f : I → J1; s + |I|K identifying the positions, in the list of outgoing
edges of v, of the edges pointing to an element of I.

More formally, this decomposition describes a bijection between DOAGs with at least 2
vertices and quadruples of the form (D′, s, I, f) where:

� D′ is a DOAG (obtained by removing v from D);
� I is any subset of the internal vertices of D′ (children of v in D);
� s is any integer between 0 and the number of sources of D′;
� and f : I → J1; s + |I|K is an injective function (mapping the vertices of I to their
positions in the list of children of v in D).

In order to prove that this is indeed an bijection, we consider the inverse transformation
below. Start with a quadruple (D′, s, I, f) as described above. Add a new source v
in D′ with s+ |I| outgoing edges such that the i-th of these edges is connected to f−1(i)
when i ∈ f(I) and is connected to one of the s largest sources of D′ otherwise. The s
largest sources of D′ must be connected to the new source exactly once and in the same
order as they appear in the list of sources of D′. The resulting graph is a DOAG and it
is easy to check that this mapping and the decomposition are inverses of each other.

Note that the order in which the vertices are removed when iterating this process
corresponds to a variant of the BFS algorithm where only sources are eligible to be picked
next in the search, and their are picked in the order described above. Figure 2 illustrates
this decomposition by applying the first two steps on a large example DOAG.

This decomposition can be used to establish a recursive formula for counting DOAGs,
which is given below. Let Dn,m,k denote the number of DOAGs with n vertices, m edges
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1
3

2
2

1

3 4 5

1

2 3 4 6

s = 3
I = {■}
f = {■ 7→ 3}

decomp

s = 2
I = {▲, }

f =

{
▲ 7→ 2

 7→ 4

}

decomp

5

Figure 2: The two first steps of the recursive decomposition of a DOAG by removing
sources one by one in a breadth first search (BFS) fashion. The edges are implicitly
oriented from top to bottom and the order of the outgoing edges of each vertex is indicated
by the thinner blue arrows (always from left to right here). The integer labels at each
stage indicate the ordering of the sources. The big disk, square, and triangle are only here
to highlight particular vertices involved with the functions f in the decomposition.

and k sources, then we have:

D1,m,k = 1{m=0∧ k=1}

Dn,m,k =

{
0 when k ⩽ 0∑n−k

p=0

∑p
i=0Dn−1,m−p,k−1+p−i

(
n−k−p+i

i

)(
p
i

)
i! otherwise,

(1)

where p = s+ i corresponds the out-degree of the smallest source. The term
(
n−k−p+i

i

)
=(

n−k−s
i

)
accounts for the choice of the set I and the term

(
p
i

)
i! accounts for the number

of injective functions f : I → J1; pK. The upper bound on p in the sum is justified by the
fact that the out-degree of any vertex can be at most the number of non-sources in the
graph, that is (n− k).

The decomposition scheme presented here differs from the approach described by
Robinson in [38] as it operates on only one source at a time. It is also reminiscent of
the peeling processes used in map enumeration where maps are decomposed one face at a
time, see for instance [27]. However, the absence of ordering amongst the incoming edges
of each vertex in our setup renders those approaches inapplicable as is.

2.1.1 Special sub-classes based on out-degree constraints

Since p = i + s is the out-degree of the removed source in the above summation, it is
easy to adapt this sequence for counting DOAGs with constraints on the out-degree of the
vertices. For instance, DOAGs with only one sink are obtained by ensuring that every
vertex has out-degree at least one. In other words, let the summation start at p = 1.
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Note that restricting DOAGs to have only one single sink or one single source ensures
that they remain connected, however not all connected DOAGs are obtained this way. As
another example, DOAGs with out-degree bounded by some constant d are obtained by
letting p range from 0 to min(n− k, d).

The general principle is that the DOAGs whose vertices’ out-degrees are constrained
to belong to a given set P , are enumerated by the following generalised recurrence.

DP
1,m,k = 1{m=0∧ k=1}

DP
n,m,k =

{
0 when k ⩽ 0∑

p∈P
∑p

i=0D
P
n−1,m−p,k−1+p−i

(
n−k−p+i

i

)(
p
i

)
i! otherwise,

(2)

The first values of the sequence Dn,m =
∑

k Dn,m,k counting DOAGs by number of
vertices and edges only are given in Table 1. Table 2 gives the first values of DP

n =∑
m,k D

P
n,m,k for some relevant choices of P . None of these sequences seem to appear in

the online encyclopedia of integer sequences (OEIS1) yet.

Table 1: Number of DOAGs with n vertices and m edges for small values of n and m.

n Dn Dn,m =
∑

k Dn,m,k for m = 0, 1, 2, 3, . . .

1 1 1
2 2 1, 1
3 8 1, 2, 3, 2
4 95 1, 3, 8, 17, 27, 27, 12
5 4858 1, 4, 15, 48, 139, 349, 718, 1136, 1272, 888, 288
6 1336729 1, 5, 24, 100, 391, 1434, 4868, 14940, 40261, 92493, 175738, 266898, 310096, 258120,

136800, 34560

Table 2: Number of DOAGs with n vertices and a constrained set of allowed degrees.

Restrictions sequence

P = N
(all DOAGs)

1, 2, 8, 95, 4858, 1336729, 2307648716, 28633470321822, 2891082832793961795,
2658573971407114263085356, 24663703371794815015576773905384, . . .

P = N, k = 1
(1 source)

1, 1, 4, 57, 3399, 1026944, 1875577035, 24136664716539, 2499751751065862022,
2342183655157963146881571, 22043872387559770578846044961204, . . .

P = N⋆, k = 1
(1 source, 1 sink)

1, 1, 3, 37, 2103, 627460, 1142948173, 14701782996075, 1522511169925136833,
1426529804350999351686869, 13426022673540053054145359653988, . . .

P = {0, 1, 2}, k = 1
(unary-binary)

1, 1, 4, 23, 191, 2106, 29294, 495475, 9915483, 229898277, 6074257926,
180460867600, 5962588299084, . . .

1https://oeis.org/
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3 Earlier results on counting and recursive sampling

In this section we summarise our earlier results on the counting and random sampling
problem for DOAGs when all three parameters (number of vertices, edges and sources)
are fixed. The theorems are stated in a slightly more general setting here than in [18] so
as to capture all variants of the model as described in Section 2.1.1. However, there is
no technical difficulty in the generalisation so that the proofs from [18] still apply, almost
without modification.

We first present a utility result: computing all the numbers DP
n,m,k up to a certain

bound on n, m, and k can be done in polynomial time. This is of moderate interest in
itself, but this is a requirement for our samplers, that compute theses values as a pre-
processing step. Our algorithm is based on the so-called “recursive method” from [35].

3.1 Counting

As mentioned above, tabulating the values of the sequence DP
n,m,k can be done in polyno-

mial time. This means that this counting pre-processing step is tractable up to a certain
point.

Theorem 3. Let N,M > 0 be two integers. And let P be a subset of N such that P∩J0;nK
can be enumerated in linear time in n. Computing DP

n,m,k for all n ⩽ N , all m ⩽
M , and all possible k can be done with O(N4M) multiplications of integers of size at
most O(max(M,N) lnN).

The bound given here is independent of P and thus pessimistic. If P is bounded
(bounded out-degree DOAGs) or sparse, the algorithm will perform better. In practice,
the cost of the counting process is actually the limiter factor for the recursive sampler
presented below. Indeed, it is hard to reach sizes of the order of the thousands because of
the large amount of time and memory necessary to compute and store all the numbers.

3.2 Recursive random sampling

A straightforward application of the recursive method from Nijenhuis and Wilf [35] leads
to Algorithm 1, which is presented here in a high level fashion.

In [18, §3], we discuss how to implement Algorithm 1 efficiently. In particular we
suggest a data-structure to represent DOAGs that allows for an efficient selection of the
subset I at line 6 and the function f at line 7. In addition, implementation considerations
are also given for the pick instruction at line 4, which is the core of the “recursive method”.
As mentioned above, the numbers DP

n,m,k either have to be pre-computed for Algorithm 1
to work, or must be lazily computed and memoised on the fly.

In practice, pre-computing all the necessary numbers to sample a uniform DOAG
with n = 50 vertices (without any constraint onm and on the out-degree) using our library
already takes about 8 seconds on a standard laptop. This running time rapidly increases,
which makes the cost generating large structures prohibitive. However, when limiting
the number of edges and using a finite set P , one can achieve much better results. For
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Algorithm 1 Recursive uniform sampler of DOAGs

Input: Three integers (n,m, k) such that DP
n,m,k > 0

Output: A uniform random DOAG with n vertices (including k sources) and m edges
1: function UnifDOAGP(n,m, k)
2: if n = 0 or n = 1 then generate the (unique) DOAG with n vertex
3: else

4: pick (p, i) with probability DP
n−1,m−p,k−1+p−i

(
n− k − p+ i

i

)(
p

i

)
i!/DP

n,m,k

5: D′ ← UnifDOAGP(n− 1,m− p, k − 1 + p− i)
6: I ← a uniform subset of size i of the inner vertices of D′

7: f ← a uniform injection from I to J1; pK
8: return decomp−1(D′, p− i, I, f)

instance generating the four large bounded-degree DOAGs from Figure 3b takes about 11
seconds on the same laptop, most of this time being spent in the pre-computation.

Theorem 4. Algorithm 1 computes a uniform random DOAG with n vertices (among
which k are sources) and m edges by performing O (

∑
v d

2
v) multiplications of a small

integer by a large integer, where v ranges over the vertices of the resulting graph and dv
is the out-degree of v.

Note that the sum
∑

v d
2
v is of the order of m

2 in the worst case but can be significantly
smaller, in particular if P is bounded or sparse. In the best case we have dv ∼ m

n
for

most of the vertices and as a consequence
∑

v d
2
v ∼ m2/n. Also note that in order for

the algorithm to be made generic in P , we only have to use the sequence DP
n,m,k rather

than Dn,m,k, which reflects the generality of the recursive method.
Four random DOAGs, drawn using Algorithm 1 with P = {0, 1, 2}, n = 1250, m =

1300 and k = 1 are pictured in Figure 3b. As a comparison, a truncated version of the
Git history of the linux kernel is pictured on the left in Figure 3a. Expectedly, the Git
history looks more structured. This is because developers work on short-lived branches,
consisting of chains of commits, generally starting from the main branch and merged
back on main after the new feature (or bug fix, etc.) has been completed, reviewed and
accepted.
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(a) The Git history of the Linux
kernel, truncated at depth 70, as of
the 14th of April 2025, just after
the release of version 6.15-rc2. It
has 1270 vertices and 1431 edges.

(b) Four DOAGs drawn uniformly at random amongst
all DOAGs with 1250 vertices, 1300 edges and with out-
degree bounded by 2.

Figure 3: The graphical representation of a (truncated) Git history and four bounded-
degree random DOAGs.
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This explains the chains of unary vertices and the triangular patterns. Although the
random DOAGs look more “random”, they exhibit similar smaller-scale structures such
as triangular patterns and locally denser areas. It has to be noted that in order to obtain
those pictures, we had to reduce the number of edges compared to the Git graph on the
left as uniform DOAGs with n = 1270 andm = 1431 are already visually too dense to look
like a Git graph. We recall that the DOAG model presented in this paper aims at being
a general purpose modelling tool and thus does not integrate Git specific constraints. In
this regard, a random DOAG is not expected to have all the structural properties of a Git
graph. However, the comparison in Figure 3 showcases that the model can be tweaked
(here by controlling m and the out-degree) in order to resemble some application-inspired
graphs. In the case of Git, we obtain a somewhat similar shape.

4 Extension to labelled DAGs

In this section we demonstrate how our decomposition scheme can be applied to the clas-
sical model of labelled DAGs to obtain new recurrences on known sequences. In the 1990s,
Gessel [19] already obtained equations allowing to count labelled DAGs by vertices, edges,
and sources (and also sinks actually) using a generating functions approach. These equa-
tions involve the inclusion-exclusion principle which has one drawback: they are usually
not amenable to efficient random generation. The reason for this is that subtractions
translate into rejections in the recursive algorithm, that are here too costly to be usable.
In the present paper, we derive new recurrences with a combinatorial meaning and that
do not involve the inclusion-exclusion principle. As a consequence, we can obtain an effi-
cient random sampler of DAGs with full control over the number of vertices, sources, and
edges.

As in Section 2, we present here a slight generalisation of the formula given in [18,
§4] allowing to capture various classes of labelled DAGs. We omit the proofs here as
they follow a straightforward adaptation of the arguments given in [18] and the recursive
method.

4.1 Recursive decomposition

The key idea to our decomposition is to consider labelled DAGs with a distinguished source
(this operation is called pointing) and to decompose them by removing this source. This
describes a bijection between source-pointed labelled DAGs and labelled DAGs endowed
with some additional structure, in the same fashion as in Section 2 of the present paper.

Let P be any subset of N and let AP
n,m,k denote the number of labelled DAGs with m

edges and n vertices including k sources, and in which every vertex except the (first) sink
has out-degree in P . The number of such DAGs with a distinguished (or pointed) source is
given by k ·AP

n,m,k since any of the k sources may be distinguished. Let D denote one such
DAG and let v denote its distinguished source. Removing the distinguished source in D
and decrementing the labels of the vertices of higher label than v by one yields a regular
vertex-labelled DAG D′ with n − 1 vertices. Moreover, the three pieces of information
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that are necessary to reconstruct the source are the following:

1. the label ℓ of the source v which has been removed;
2. the set S of sources of D′ which have been uncovered by removing v;
3. the set I of internal (non-sources) vertices of D′ that were pointed at by v.

The reconstruction is then straightforward:

� increment all the labels that are greater or equal to ℓ by one;
� create a new vertex labelled ℓ and “mark” it: this is the distinguished source;
� add edges from ℓ to all the vertices from S and I.

This decomposition is simpler than that of DOAGs because there is no ordering to main-
tain here. Hence, any subset S of the set of sources of D′ is licit here. The triplet (ℓ, S, I)
is thus not constrained which leads to the simple counting formula, given below, where p
denotes the out-degree of v (and thus the cardinality of S ∪ I).

AP
1,m,k = 1{m=0 ∧ k=1}

kAP
n,m,k =

{
n
∑

p∈P∩J0;n−kK
∑p

i=0A
P
n−1,m−p,k−1+p−i

(
n−k−p+i

i

)(
k−1+p−i

p−i

)
if 1 ⩽ k

0 otherwise.

(3)

In the last equation:

� the factor k on the left counts the number of ways to choose the distinguished source;
� the factor n on the right counts the number of ways to choose the label of the new
source;

� and the two binomial coefficient count the number of ways to select the subsets I
and S.

When P = N, we recover the sequence counting all labelled DAGs, known as A003024
in the OEIS and first enumerated in [38, 41, 36]. For P = N⋆ and with k = 1, we find
the number of labelled DAGs with a single source and a single sink, known to Gessel
in [20, 19] and stored at A165950 in the OEIS.

4.2 Random generation

A recursive random sampling algorithm similar to Algorithm 1 from Section 3 can be
obtained from formula (3). The only difference in methodology from Algorithm 1 is that
one has to deal with the marking of the sources here and thus the division by k at the third
line of (3). It can be handled as follows: at every recursive call, first generate a labelled
DAG with a distinguished source (counted by k · An,m,k) and then forget which source
was distinguished. Since the recursive formula for k · An,m,k has no division, the uniform
sampler of marked DAGs is obtained using the standard recursive method. Moreover,
forgetting which source was marked does not introduce bias in the distribution since all
sources have the same probability to be marked. A uniform random sampler of labelled
DAGs with n vertices, k sources, and m edges is described in Algorithm 2.
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Algorithm 2 Uniform random sampler of vertex-labelled DAGs.

Input: Three integers (n,m, k) such that AP
n,m,k > 0

Output: A uniform random labelled DAG with n vertices (including k sources and one
sink), m edges, and in which every vertex (except the first sink) has out-degree in P .
function unifDAGP(n,m, k)

if n = 0 or n = 1 then generate the (unique) labelled DAG with n vertex
else

pick (p, i) with probability
AP

n−1,m−p,k−1+p−i

(
n−k−p+i

i

)(
k−1+p−i

p−i

)
AP

n,m,k

D′ ← unifDAGP(n− 1,m− p, k − 1 + p− i)
I ← a uniform subset of size i of the inner vertices of D′

S ← a uniform subset of size (p− i) the sources of D′

ℓ ← Unif(J1;nK)
relabel D′ by adding one to all labels ℓ′ ⩾ ℓ
return the DAG obtained by adding a new source to D′ with label ℓ and with

an outgoing edge to every vertex of I ∪ S

5 Matrix encoding

In this section, we introduce the notion of labelled transition matrices and give a bijection
between DOAGs and these matrices, thus offering an alternative point of view on DOAGs.
These results are key ingredients of the paper, since they enable us, in the next two
sections, to prove an asymptotic equivalence for the number of DOAGs with n vertices,
and to design a efficient uniform random sampler for those DOAGs. We also recall here
the definition and basic properties of variations, which are an elementary combinatorial
object playing a central role in our analysis.

5.1 The encoding

The decomposition scheme described in Section 2 corresponds to a traversal of the DOAG.
This traversal induces a labelling of the vertices from 1 to n, which allows us to associate
the vertices of the graph to these integers in a canonical way. We then consider its
transition matrix using these labels as indices. Usually, the transition matrix of a directed
graph D is defined as the matrix (ai,j)1⩽i,j⩽n such that ai,j is 1 if there is an edge from
vertex i to vertex j in D, and 0 otherwise. This representation encodes the set of the
edges of a DAG but not the edge ordering of DOAGs. In order to take this ordering into
account, we use a slightly different encoding.

Definition 5 (Labelled transition matrix of a DOAG). Let D be a DOAG with n ver-
tices. We associate the vertices of D to the integers from 1 to n corresponding to their
order in the vertex-by-vertex decomposition. The labelled transition matrix of D is the
matrix (ai,j)1⩽i,j⩽n with integer coefficients such that ai,j = k > 0 if and only if there is
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an edge from vertex i to vertex j and this edge is the k-th outgoing edge of i. Other-
wise ai,j = 0.

An example of a DOAG and its transition matrix are pictured in Figure 4. The thick
lines are not part of the encoding and their meaning will be explained later when we
characterise which integer matrices can be a labelled transition matrix. Let ϕ denote
the function mapping a DOAG to its labelled transition matrix. This function is clearly
injective as the edges of the graph can be recovered as the non-zero entries of the ma-
trix, and the ordering of the outgoing edges of each vertex is given by the values of the
corresponding entries in each row. Characterising the image of ϕ however requires more
work.
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2 1
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1 2
13 2

1 2 3
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Figure 4: An example DOAG and its labelled transition matrix, the zeros are represented
by the absence of a number.

We can make some observations. First, by definition of the traversal of the DOAG,
the labelled transition matrix of a DOAG is strictly upper triangular. Indeed, since
the decomposition algorithm removes one source at a time, the labelling it induces is a
topological sorting of the graph. Moreover, since the non-zero entries of row i encode the
ordered set of outgoing edges of vertex i, these non-zero entries form a permutation. More
formally:

� a non-zero value cannot be repeated within a row;
� and if a row contains d ⩾ 1 non-zero entries, then these are the integers from 1 to d,
in any order.

Informally, these two properties ensure that a matrix encodes a labelled DOAG (a DOAG
endowed with a labelling of its vertices) and that this labelling is a topological sorting
of the graph. However, they are not enough to ensure that this topological sorting is
precisely the one that is induced by the decomposition. The matrices satisfying these two
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properties will play an important role in the rest of the paper. We call them “variation
matrices”.

Definition 6 (Variation). A variation is a finite sequence of non-negative integers such
that

1. each strictly positive number appears at most once;
2. if 0 < i < j and j appears in the sequence, then i appears too.

The size of a variation is its length.

For instance, the sequence (6, 2, 3, 0, 0, 1, 4, 0, 5) is a variation of size 9 but the se-
quences (1, 0, 3) and (1, 0, 3, 2, 3) are not variations because the number 2 is missing in
the first one and the second contains two occurrences of the number 3. Variations can
also be defined as interleavings of a permutation with a sequence of zeros. One of the ear-
liest references to these objects dates back to 1659 in Izquierdo’s Pharus Scientiarum [25,
Disputatio 29]. They also appear in Stanley’s book as the second entry of his Twelvefold
Way [42, page 79], a collection of twelve basic but fundamental counting problems. Knuth
gives a few ancient references on this topic in [29] and in an quote (without reference) that
can be found on the OEIS page of variations at A007526. Variations are relevant to our
problem as they naturally appear as rows of the labelled transition matrices defined in
this section. Some of their combinatorial properties will be exhibited in the next section.

Definition 7 (Variation matrix). Let n > 0 be a positive integer. A matrix of inte-
gers (ai,j)1⩽i,j⩽n is said to be a variation matrix if

� it is strictly upper triangular;
� for all 1 ⩽ i ⩽ n− 1, the sub-row (ai,j)i<j⩽n is a variation (of size n− i).

From an enumerative point of view, a variation matrix can be seen as a sequence of
variations (v1, v2, . . . , vn−1) where for all 1 ⩽ i ⩽ n− 1, the variation vi has size i.

We have established that all labelled transition matrices of DOAGs are variation ma-
trices. Note that the converse is not true. For instance, the matrix pictured in Figure 5
is a variation matrix of size 3 that does not correspond to any DOAG. The property of
this matrix which explains why it cannot be the image of a DOAG is pictured in red on
the Figure. The rest of this section is devoted to characterising which of those variation
matrices can be obtained as the labelled transition matrix of a DOAG.

Consider a DOAG and its labelled transition matrix. Note that in any column j, the
non-zero entry with the highest index i (that is in the lowest row on the picture with a
non-zero element in column j) has a special role: it corresponds to the last edge pointing
to vertex j when decomposing the DOAG. This is pictured in Figure 6 where we drew,
the same DOAG as in Figure 4 and added:

� on the right (in the matrix): thick red underlines to show the last non-zero entry of
each column;
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3 1 2
1
1
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4

2
ϕ−1

invalid order wrong labelling

Figure 5: An example of a matrix of variations that cannot be obtained as a labelled
transition matrix of a DOAG. The labelled DOAG that it encodes is not labelled according
to the decomposition order.

� on the left (in the graph): thick red decorations on the last incoming edge (in
decomposition order) of each vertex.

When a column has no non-zero entry at all, the top line is pictured in thick red instead.
This is the case in the three first columns of the matrix in Figure 6. Still in the figure: in
order to make those three extra lines correspond to something in the graph, we added an
artificial extra source, connected to all other sources (there is a unique way to do this).
Those three extra edges are indeed the last incoming edges of the vertices labelled 1, 2,
and 3, that naturally correspond to the red part of the three first columns of the matrix.
Note that the thick red edges in the graph on the left of Figure 6 form a spanning tree
of the graph, and that the labelling induced by the decomposition coincides exactly with
the natural BFS order of the tree.
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Figure 6: The same example as Figure 4 with extra decorations to highlight the corre-
spondence between the last incoming edge (in decomposition order) of each vertex and
the last non-zero entry of the columns of its labelled transition matrix. An artificial ⊥
vertex, connected to every source, has been added in the graph in order to show that the
thick red edges form a spanning tree of the graph.
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< <ℓ1 ℓ2 ℓ3

Figure 7: Same-
row underlined en-
tries are sorted.

Another important remark is that, when several underlined cells
occur on the same row i in the matrix, they correspond to several
sources that are discovered at the same decomposition step of the
DOAG (upon removing the same source). Recall that the decompo-
sition algorithm sorts the labels of these new sources by following the
total order of the outgoing edges of vertex i. This implies that the
underlined entries within the same row have to be increasingly sorted
(from left to right). For instance, observe that there are three con-
secutive underlined cells in the first row of the matrix in Figure 6.
Indeed, when removing the first source of the DOAG on the left, we
uncover three new sources which are respectively in first, second and
fourth position in the outgoing edges order of the removed source.

Figure 8: Thick
red lines draw a de-
scending staircase.

A second key property is that if more than one underlined cell oc-
cur in a row of the matrix, these are always the first non-zero entries
in that row. This is because, the decomposition algorithm consumes
sources in the same order in discovers them. As a consequence, for a
given vertex i, those of its children that become sources upon remov-
ing i will be processed before any other children, and thus appear first
in the list of the non-zero entries of the i-th row. Put differently, the
red thick lines drawn in Figure 4 is visually a staircase that only goes
down when moving toward the right of the matrix.

The two properties that we just described actually characterise the variation matrices
that can be obtained as the labelled transition matrices of a DOAG. This is stated in a
more formal manner in Theorem 8.

Theorem 8. All labelled transition matrices of DOAGs are variation matrices. Further-
more, let A = (ai,j)1⩽i,j⩽n be a variation matrix, and for all j ∈ J1;nK, let bj denote the
largest i ⩽ n such that ai,j > 0 if such an index exists and 0 otherwise. Then, A is the
labelled transition matrix of some DOAG if and only if the two following properties hold:

� the sequence j 7→ bj is weakly increasing;
� whenever 0 < bj = bj+1, we have that abj ,j < abj ,j+1.

The sequence (bj)1⩽j⩽n from the theorem is the formalisation of the thick red lines
from Figure 6. The first condition from the theorem corresponds to the ever-descending
nature of the “staircase”, as illustrated in Figure 8 The second condition corresponds to
the ordering of underlined cells within a row, as illustrated in Figure 7.

Proof. The fact that the labelled transition matrix of a DOAG is a variation matrix is
clear from the definition. We prove the rest of the theorem in two steps.

Step 1: labelled transition matrices satisfy the conditions. Let D be a DOAG
of size n and let A be its labelled transition matrix. Let b = (bj)1⩽j⩽n be defined as in
the statement of the theorem. We shall prove that it satisfies the two properties of the
theorem. The case n = 1 is trivially and we proceed by induction when n ⩾ 2.
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When n ⩾ 2, we can decompose D as a quadruplet (D′, s, I, f) and we have that the
labelled transition matrix of D′ is the sub-matrix A′ of A obtained by removing its first
row and first column, that is A′ = (ai+1,j+1)1⩽i,j⩽n−1. We can define the sequence b′ =
(b′j)1⩽j⩽n−1 corresponding to A′ similarly to the sequence b.

We distinguish between three cases.

� If j is such that bj = 0, then bj ⩽ bj+1 automatically, and there is no second
condition to check.

� If j is such that bj = 1, then bj+1 cannot be zero, otherwise that would mean that
the vertex labelled (j + 1) is a source of D but the vertex labelled j is not. Indeed,
since the sources of D are processed before any other vertex by the decomposition
algorithm, they get the smallest labels. Hence bj ⩽ bj+1.
In addition, if bj = bj+1 = 1, then the vertices labelled j and (j + 1) both become
sources, at the same time, upon removing the first vertex. By construction of the
decomposition, they get labels in an order compatible with the order of the outgoing
edges of the first source, and thus we have a1,j < a1,j+1.

� Finally, if j is such that bj ⩾ 2, then we have bj = b′j−1 + 1. By induction we also
have that b′j ⩽ b′j−1, which, in particular, implies that there is at least one non-zero
entry in the j-th column of A′ and thus in the (j + 1)-th column of A. It follows
that bj+1 = b′j + 1 and finally bj ⩽ bj+1 and bj = bj+1 =⇒ abj ,j < abj ,j+1 by
induction.

Step 2: any matrix satisfying the conditions is a labelled transition matrix.
Let A be a variation matrix of size n and let b be as in the statement of the theorem
and satisfying the two given properties. We shall prove that A is the image by ϕ of some
DOAG.

Let V = J1;nK and E = {(i, j) ∈ J1;nK2 | ai,j > 0}. We have that (V,E) defines an
acyclic graph since A is strictly upper-triangular. In addition, for each v ∈ V , define ≺v

to be the total order on the outgoing edges of v in (V,E) such that u ≺v u′ if and only
if av,u < av,u′ in A. This is well defined since the outgoing edges of v are precisely the
integers j such that av,j > 0 and since the non-zero entries of the row v are all different
by definition of variation matrices. Finally, define ≺⊤ to be the total order on the sources
of (V,E) such that u ≺⊤ v if and only if u < v as integers. Let D be the DOAG given
by (V,E, (≺v)v ∈V ∪{⊤}).

Remember that DOAGs are considered up to a permutation of their vertices that
preserves E and ≺. In order to finish this proof, we have to check that the particular
labelling encoded by V is indeed the labelling induced by the decomposition of D. Then
it will be clear that ϕ(D) = A and we will thus have exhibited a pre-image of A.

First, since A is strictly upper-triangular, its first column contains only zeros and
thus 1 is necessarily a source of D. In addition, by definition of ≺⊤, it must be the
smallest source. Then, upon removing i, one of two things can happen:

� either D has more than one source, in which case 2 is the second source by monotony
of the sequence (bj)1⩽j⩽n;
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� or 1 was the unique source of D, in which case the next source to be processed is
its first child. The children of 1 are the integers j such that bj = 1. By monotony
of bj again (or triangularity of the matrix), 2 is necessarily a child of 1. Moreover,
by the second property of the sequence b, we have that for all j < j′ such that bj =
bj′ = 1, a1,j < a1,j′ .

In both case, we proved that 2 is the second vertex to be processed. We can then re-
peat this argument on the DOAG obtained by removing 1, which corresponds to the
matrix (ai,j)2⩽i,j⩽n and conclude by induction.

We have now established that the encoding ϕ of DOAGs as labelled transition matrices
is a bijection from DOAGs to the matrices described in Theorem 8. From now on, we will
write “a labelled transition matrix” to refer to such a matrix. We can also state a few
simple properties of these matrices. By definition we have that

� the number of vertices of a DOAG is the dimension of its labelled transition matrix;
� the number of edges of a DOAG is the number of non-zero entries of the matrix;
� the sinks of the DOAG correspond to the zero-filled rows of the matrix;
� the sources of the DOAG correspond to the zero-filled columns of the matrix.

Furthermore, the first property of the sequence (bj)1⩽j⩽n defined in Theorem 8 implies
that the zero-filled columns of the matrix must be contiguous and on the left of the matrix.
The number of sources of the DOAG is thus the maximum j such that column j is filled
with zeros.

We will see in the next section that working at the level of the labelled transition
matrices, rather than at the level of the graphs, is more handy to exhibit asymptotic
behaviours. This will also inspire an efficient uniform random sampler of DOAGs with n
vertices in Section 7.

6 Asymptotic results

The characterisation of the labelled transition matrices of DOAGs gives a more global
point of view on them compared to the decomposition given earlier, which only looks lo-
cally around one source. By approaching the counting problem from the point of matrices,
we manage to provide lower and upper bounds on the number of DOAGs with n vertices
(and any number of edges). These bounds are precise enough to give a good intuition on
the asymptotic behaviour of these objects, and we then manage to refine them into an
asymptotic equivalent for their cardinality. Building on this same approach, we provide
in Section 7 an efficient uniform sampler of DOAGs with n vertices.

This section is mostly devoted to proving Theorem 9. Sub-sections 6.1 to 6.3 present
the general approach and give all the intermediate results that are necessary to prove
Theorem 9. We conclude this section by giving asymptotic estimations of two relevant
parameters of DOAGs under the uniform model: their number of sources and edges. We
obtain these two last results by leveraging the work done in this section on the matrix
point of view on DOAGs.
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Theorem 9. There exists a constant c > 0 such that the number Dn of DOAGs with n
vertices and the number D⋆

n of such DOAGs having only one source satisfy

Dn =
(
1 +O

(
n−1
))

D⋆
n =

c√
n

en−1 ¡(n− 1)!
(
1 +O

(
n−1
))

∼ c · eζ′(−1)−1 · n−7/12 ·
(
e
√
2π
)n
· e−

3
4
n2 · nn2/2

where ¡k! =
∏k

i=0 i! denotes the super factorial of k.

The super factorial provides a concise way to express this equivalent and also reflects
the relation between DOAGs and variation matrices, which will be further developed in
this section.

6.1 First bounds on the number of DOAGs with n vertices

Let Dn =
∑

m,k Dn,m,k denote the number of DOAGs with n vertices and any number of
sources and edges. By Theorem 8, all labelled transition matrices are variation matrices.
A straightforward upper bound for Dn is thus given by the number of variation matrices
of size n.

Lemma 10 (Upper bound on the number of DOAGs). For all n ⩾ 1, the number Dn of
DOAGs of size n satisfies

Dn ⩽ ¡(n− 1)!en−1

where ¡k! =
∏k

i=0 i! denotes the super factorial of k.

The term “super factorial” seems to have been coined by Sloane and Plouffe in [39,
page 228] but this sequence had been studied before that, in 1900, by Barnes [2] as the
integer values of the “G-function”. In fact, if G(z) denotes the complex-valued G-function
of Barnes, we have the identity G(n + 2) = ¡n! for all integer n. Barnes also gives the
following equivalent.

Lemma 11 (Asymptotic estimation of the super-factorial [2]). When n→∞, we have

¡(n− 1)! = G(n+ 1) ∼ eζ
′(−1) · n−1/12 ·

(√
2π
)n
· e−

3
4
n2 · nn2/2

where ζ denotes the Riemann zeta function.

In order to prove Lemma 10, we first need to give estimates for the number vn of
variations of size n.

Lemma 12 (Exact and asymptotic number of variations). For all 0 ⩽ p ⩽ n, the num-
ber vn of variations of size n, and the number vn,p of variations of size n containing
exactly p zeros, are respectively given by

vn = n!
n∑

j=0

1

j!
and vn,p =

n!

p!

As a consequence vn ⩽ e · n! and vn = e · n! + o(1).
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Proof. Let 0 ⩽ p ⩽ n, a variation of size n containing exactly p zeros is the interleaving
of a permutation of size (n− p) with an array of zeros of size p. As a consequence

vn,p =

(
n

p

)
(n− p)! =

n!

p!
.

We then get vn and the asymptotic estimate by summation:

vn =
n∑

p=0

vn,p = n!
n∑

p=0

1

p!
= n!

(
∞∑
p=0

1

p!
−

∞∑
p=n+1

1

p!

)
= en!−

∞∑
p=n+1

n!

p!
,

which allows to conclude since the last sum is
∑

p>n
n!
p!
= O(n−1).

The proof of Lemma 10 follows from this lemma.

Proof of Lemma 10. By inclusion, there are less DOAGs of size n that there are varia-
tion matrices. In addition, a variation matrix is given by a sequence v1, v2, . . . , vn−1 of
variations such that for all i, vi is of size i. We thus have the following upper bound
for Dn:

Dn ⩽
n−1∏
i=1

vn−i ⩽
n−1∏
i=1

e · (n− i)! = ¡(n− 1)!en−1.

̸=
̸=
̸=
̸=
̸=
̸=
̸=

⋆ ⋆
⋆
⋆
⋆
⋆
⋆

⋆
⋆
⋆
⋆

⋆
⋆
⋆
⋆
⋆

⋆
⋆
⋆⋆

⋆

Figure 9: Lower-
bound on the set
of labelled transi-
tion matrices.

Obtaining a lower bound on Dn requires to find a subset of the
possible labelled transition matrices described in Theorem 8 that is
both easy to count and large enough to capture a large proportion of
the DOAGs. One possible such set is that of the labelled transition
matrices which have no zero values on the super-diagonal (ai,i+1)1⩽i<n.
These matrices are picture in Figure 9 on the right.

These correspond to DOAGs such that, at every step of the de-
composition, we have only one source and thus uncover exactly one
new source. In such matrices, the properties of the sequence (bj)1⩽j⩽n

from Theorem 8 are automatically satisfied. Intuitively, forcing the
super-diagonal to be positive still leaves a large amount of free space
on the right of that diagonal to encode many possible DOAGs, so it
should be expected that it gives a decent lower bound.

Lemma 13 (A first lower bound on the number of DOAGs). There exists a constant A > 0
such that for all n ⩾ 1, we have

A

n
¡(n− 1)!en−1 ⩽ Dn.

Proof. In a labelled transition matrix with positive values on the super-diagonal, the i-th
row can be seen as a variation of size (n− i) that does not start with a zero. Moreover,
the number of variations of size n starting with a zero is actually the number of variations
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of size (n− 1) so that the number of possibilities for the i-th row of the matrix we count
here is (vn−i − vn−i−1). In addition, by Lemma 12, we also have that

vn − vn−1 = e · n!− e · (n− 1)! + o(1) = e · n! · n− 1

n

(
1 +O

(
1

n!

))
. (4)

Note that when i = n − 1, we have vn−i − vn−i−1 = v1 − v0 = 1. Indeed, the row of
index i = n − 1 contains only the number 1 in the super diagonal since at the last step
of the decomposition, we have two connected vertices and there is only one such DOAG.
Setting aside this special case, which does not contribute to the product, we get the
following lower bound for Dn:

Dn ⩾
n−2∏
i=1

(vn−i − vn−i−1) = en−2¡(n− 1)!
n−2∏
i=1

n− 1− i

n− i

n−1∏
i=1

(
1 +O

(
1

(n− i)!

))
(5)

where the first product telescopes and yields 1
n−1

and the second one converges to a
constant as n→∞. This allows to conclude the proof the lemma.

Although they are not precise enough to obtain an asymptotic equivalent for the
sequence Dn, these two bounds already give us a good understanding of the behaviour
of Dn. First of all, they let appear a “dominant” term of the form ¡(n− 1)!en−1, which is
uncommon in combinatorial enumeration. And second, it tells us we only make a relative
error of the order of O(n) when approximating Dn by ¡(n− 1)! · en−1. We will prove an
asymptotic equivalent for the remaining polynomial term, but in order to obtain this, we
first need to slightly refine our lower bound so that the “interval” between our two bounds
is a little narrower than O(n).

Lemma 14 (A better lower bound for the number of DOAGs). There exists a con-
stant B > 0 such that, for all n ⩾ 1, we have

Dn ⩾ B
ln(n)

n
¡(n− 1)!en−1.

Proof. In order to obtain this lower bound, we count the number of valid labelled transi-
tion matrices such that all but exactly one of the cells on the super-diagonal have non-zero
values. Furthermore, in order to avoid having to deal with border cases, we assume that
the unique zero value on the super-diagonal appears between i = 2 and i = n − 2.
Let 2 ⩽ i ⩽ n − 2 and let us consider those matrices (ap,q)1⩽p,q⩽n such that ai,i+1 = 0.
Those matrices are illustrated in Figure 10

The differences between these matrices and those enumerated in the proof of the
previous lemma are the following (assuming i is that unique index such that ai,i+1 = 0).

1. On row i−1, the two first cells on the right of the diagonal (ai−1,i and ai−1,i+1) must
have positive values and must be in increasing order. In the case of ai−1,i, this is
because it is on the super diagonal. And for ai−1,i+1, this is because ai,i+1 = 0: since
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Figure 10: Illustration of the matrices with only one zero on the super-diagonal

it is above this cell, and since the cell ai−1,1 on its left is non-zero, it must be non-
zero. Otherwise the condition from Theorem 8 are violated. In terms of DOAGs,
this means that the vertex i− 1 produces two new sources when it is removed but
vertex i produces none.

2. On row i, any variations of size (n− i) starting by a zero is allowed.

We get the number of variations of size n starting by two increasing positive values
(condition 1 above) by inclusion-exclusion. That is,

� consider all the variations of size n (vn possibilities);
� remove the number of variations that have a zero in first position (vn−1 possibilities);
� remove the number of variations that have a zero in second position (vn−1 possibil-
ities);

� add the number of variations that start with two zeros, because they have been
removed twice in the two previous lines (vn−2 possibilities);

� and finally, divide by two because only half of these matrices have their first values
in increasing order.

This yields the following formula for counting such variations:

vn − 2vn−1 + vn−2

2
∼

n→∞

e

2
· n!.

As a consequence, the total number of labelled transition matrices considered at the
beginning of the proof, such that ai,i+1 = 0, is given by

vn−i−1 − 2vn−2−i + vn−3−i

2
· vn−i−1 ·

∏
1⩽p⩽n−1
p ̸∈{i−1,i}

(vn−p − vn−p−1)

=
(vn−i−1 − 2vn−2−i + vn−3−i)vn−i−1

2(vn−i+1 − vn−i)(vn−i − vn−i−1)
·
n−1∏
p=1

(vn−p − vn−p−1).

By summing over 2 ⩽ i ⩽ n− 2, we get

n−2∑
i=2

(vn−i−1 − 2vn−2−i + vn−3−i)vn−i−1

2(vn−i+1 − vn−i)(vn−i − vn−i−1)
·
n−1∏
p=1

(vn−p − vn−p−1). (6)
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The fraction in the last equation is equivalent to 1
2(n−i)

when n − i → ∞. So after a
change of variable, the above sum is equivalent to

n−2∑
i=2

(vi−1 − 2vi−2 + vi−3)vi−1

2(vi+1 − vi)(vi − vi−1)
∼

n−2∑
i=2

1

2i
∼ ln(n)

2

In addition, we know from the proof of Lemma 13 that the product in equation (6) is
equivalent to c

n
en−1¡(n− 1)! for some constant c, which allows to conclude.

6.2 Obtaining the polynomial term by bootstrapping

Let us denote Pn the polynomial term in Dn, that is the quantity

Pn
def
=

Dn

¡(n− 1)!en−1
.

We have proved above that for some constant B > 0, we have B ln(n)
n

⩽ Pn ⩽ 1. A
consequence of these inequalities is that for all k ∈ Z, we have

Pn+k ⩽ 1 ⩽
n

B ln(n)
Pn =

n→∞
o(nPn). (7)

Note that we did the extra work in Lemma 14 in order to get the extra ln(n) factor
that is crucial to get the o term. Equation (7) allows to justify that Pn+k/n is negligible
compared to Pn, for any constant values of k. Although intuitively the contrary would
be surprising, this fact is not clear a priori as an arbitrary polynomial sequence Pn could
have violent oscillations for some values of n. This is a key ingredient for proving an
asymptotic equivalent for Pn.

To refine our knowledge on the sequence Pn, we use a decomposition of the labelled
transition matrices focused on the values it takes near the diagonal on its first rows.
We categorise the possible labelled transition matrices (ai,j)1⩽i,j⩽n into the four following
cases.

Case 1: a1,2 = 0. In this case, the first source is not connected to the second vertex
and the matrix has thus more than one source. The first row of such a matrix
is a variation of size (n − 2) and the lower part (ai,j)2⩽i,j⩽n encodes a DOAG of
size (n − 1), the DOAG obtained by removing the first source. However, it is
important to note that not all combinations of a size-(n − 2) variation and a size-
(n−1) matrix yield a valid size-n labelled transition matrix. For instance, a variation
of the form v = (0, 1, 0, 2, . . .) and a lower matrix with at least three sources cannot
be obtained together as they would violate the constraints of Theorem 8.

Case 2: a1,2 > 0 ∧ a2,3 > 0. In this case, the first row is a variation of size (n − 1)
starting by a positive value, and the lower part (ai,j)2⩽i,j⩽n encodes a DOAG of
size (n − 1) with exactly one source, again obtained by removing the first source.
This second fact is a direct consequence of a2,3 > 0. Here, all such pairs can be
obtained.
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Case 3: a1,2 > 0 ∧ a2,3 = 0 ∧ a3,4 > 0. In this case the lower part (ai,j)3⩽i,j⩽n encodes
a DOAG of size n−2 with exactly one source, the first row is necessarily a variation
of size (n− 1), starting with two positive increasing values, and the second row is a
variation of size (n− 2) starting by a zero. Here again this decomposition is exact:
all such triplets can be obtained here.

Case 4: a1,2 > 0 ∧ a2,3 = a3,4 = 0. Finally, this case captures all the remaining ma-
trices. The first row is a variation of size (n−1), the second and third rows are vari-
ations of sizes (n−2) and (n−3) starting with a zero, and the lower part (ai,j)4⩽i,j⩽n

encodes a size-(n− 3) DOAG. Of course, not all such quadruples can be obtained,
but this over-approximation will be enough for our proof.

This decomposition into four different cases is illustrated in Figure 11 where D represents
the set of all possible DOAG labelled transition matrices and D⋆ represents all of those
matrices that encode a single-source DOAG.

⋆ ⋆

0

⋆ ⋆

0

⋆

0

D =

D⋆ = + + O




D⋆

D⋆

D

0

D⋆ +O



D

Case 1

Case 2 Case 3 Case 4

Figure 11: Decomposition of DOAG labelled transition matrices based or their content
near the top of the diagonal. The symbols D and D⋆ respectively represent the set
of all possible DOAG labelled transition matrices the set of all of those matrices such
that a1,2 > 0. The stars (⋆) represent strictly positive values.

We compute the contributions to Dn coming from each of these four terms described
above. Let us denote by D⋆

n the number of DOAG of size n with exactly one source,
or equivalently the number of DOAG labelled transition matrices containing a non-zero
value at coordinates (1, 2). The first line of Figure 11 illustrates the first point of the
decomposition, which yields

Dn = D⋆
n +O(vn−2Dn−1). (8)

Note that the big-O term comes from the fact that not all pairs made of a size-(n − 2)
variation and a size-(n−1) labelled transition matrix can be obtained this way, as discussed
in the first case above. We could actually have written 0 ⩽ Dn −D⋆

n ⩽ vn−2Dn−1.
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Then we decompose the matrices from D⋆ depending of their values on the diagonal
(cases 2 to 4). The second line of Figure 11 illustrates this decomposition. This translates
into the following identity

D⋆
n = (vn−1 − vn−2)D

⋆
n−1 +

vn−1 − 2vn−2 + vn−3

2
vn−3D

⋆
n−2 +O(vn−1vn−3vn−4Dn−3) . (9)

Let us introduce the polynomial term P ⋆
n of D⋆

n defined by P ⋆
n = D⋆

n/e
n−1¡(n− 1)!. By

normalising equation (8) and using equation (7) we have

P ⋆
n = Pn +O

(
vn−2

e(n− 1)!
Pn−1

)
= Pn +O

(
Pn−1

n

)
= Pn + o(Pn) .

In other words, we have that Pn and P ⋆
n are equivalent. Then, by normalising equation (9)

by en−1¡(n− 1)!, we obtain the following asymptotic expansion

P ⋆
n =

(
1− 1

n
+O

(
1

n2

))
P ⋆
n−1 +

1

2n

(
1 +O

(
1

n

))
P ⋆
n−2 +O

(
Pn−3

n2

)
· (10)

Since P ⋆
n ∼ Pn and by equation (7), we have that O(Pn−3n

−2) = o(P ⋆
nn

−1) and that the
first term of equation (10) dominates all the others. As a consequence we get a refinement
on our knowledge on P ⋆

n (and thus Pn), that is:

P ⋆
n ∼ P ⋆

n−1.

It is worth noting that this is the key property that makes analysing P ⋆
n possible. From

now on, we know that P ⋆
n does not oscillate, and this is all because of equation (7). By

re-using this new information in equation (10), we get another term of the expansion
of P ⋆

n :

P ⋆
n = P ⋆

n−1

(
1− 1

2n
+O

(
1

n2

))
.

We conclude on the asymptotic behaviour of P ⋆
n using the following classical argument.

The series of general term ln
(

P ⋆
n

P ⋆
n−1

)
+ 1

2n
= O(n−2) (defined for n ⩾ 2) is convergent and,

if λ denotes its sum, we have that

λ−
n∑

j=2

(
ln

(
P ⋆
j

P ⋆
j−1

)
+

1

2j

)
= O(n−1).

Furthermore, since P ⋆
1 = 1, we also have that

n∑
j=2

(
ln

(
P ⋆
j

P ⋆
j−1

)
+

1

2j

)
= lnP ⋆

n +
1

2

(
ln(n) + γ +O

(
n−1
))

where γ denotes the Euler–Mascheroni constant. As a consequence, we have that

lnP ⋆
n +

ln(n)

2
= λ+ γ +O

(
n−1
)
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and thus

P ⋆
n =

eλ+γ

√
n

(
1 +O

(
n−1
))

.

By equation (8), we also get that Pn = P ⋆
n (1 +O(n−1)), which concludes the proof of

Theorem 9, state on page 22 at the beginning of this section.

6.3 Approximation of the constant

Before concluding this section with an analysis of the behaviour of the relevant parameters
of DOAGs under the uniform model in sub-Section 6.4, we take a brief detour here to
show how to estimate numerically the value of the constant c from Theorem 9.

Let Dn,k denote the number of DOAGs with n vertices (including k sources and one
sink) and any number of edges. Using the same decomposition as in Section 2 and applying
the same combinatorial arguments we get

Dn,k =
∑

i+s⩽n−k

Dn−1,k−1+s

(
s+ i

s

)(
n− k − s

i

)
i! =

∑
s⩾0

Dn−1,k−1+s · γ(n− k − s, s) (11)

where

γ(a, b) =
a∑

i=0

(
b+ i

b

)(
a

i

)
i!. (12)

The above sum gives an explicit way to compute γ, but there is a computationally
more efficient way to do so using recursion and memoisation:

γ(a, b) = 0 when a < 0 or b < 0

γ(0, b) = 1 when b ⩾ 0

γ(a, b) = γ(a, b− 1) + a · γ(a− 1, b) + 1{b=0} otherwise.

(13)

Using this recurrence formula with memoisation, the numbers Dn,k for all n, k ⩽ N
can be computed in O(N3) arithmetic operations on big integers, which is more efficient
than using the recurrence from (1) directly. This is expected because we eliminated the
parameter m.

Note that the D⋆
n sequence from Theorem 9 corresponds to Dn,1 and that Dn =∑n

k=1 Dn,k. Using the numbers computed by this algorithm, we plotted the first 250 values
of the sequencesDn andD⋆

n normalised by n−1/2en−1¡(n− 1)! which shows the convergence
to the constant c from Theorem 9. We also note that the convergence looks faster for
the sequence D⋆

n. This suggests that the constant can be approximated by c ≈ 0.4967.
Figure 12 shows this plot as well as a zoomed-in version near 1

2
for n ⩾ 200.

6.4 Asymptotic behaviour of some parameters

We conclude our quantitative study of DOAGs with asymptotic estimations of their typical
numbers of sources and edges under the uniform model. The method we apply to get these
results builds naturally from the methodology developed in the rest of this section, hence
illustrating the usefulness of the matrix-based approach.
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Figure 12: The first values of the sequences
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red.

6.4.1 Number of sources

It follows from the previous section that the probability that a uniform DOAG of size n
has more than one source tends to zero as n→∞. We can refine this result and compute
the probability of having a constant number k of sources.

We have that the number of sources of a DOAG is also the number of empty columns
in its labelled transition matrix, and that these columns are necessarily in first positions.
Moreover, Theorem 9 gives us the intuition that most of those transition matrices con-
tain positive numbers near the top-left corner of the matrix. We thus split the set of
matrices (ai,j)1⩽i,j⩽n encoding DOAGs with k sources in two categories.

Case ak,k+1 > 0. Intuitively, the most common scenario is that there is a positive en-
try in ak,k+1. In this case the sub-matrix (ai,j)k⩽i,j⩽n can be re-interpreted as a
DOAG with only one source. Indeed, the condition ak,k+1 means that upon remov-
ing the (k − 1) first sources of the DOAG, the decomposition algorithm does not
produce any new source, leaving us with a single-source DOAG. We can characterise
those matrices: they are made of (k − 1) variations of size (n− k) in the first rows,
and a size-(n − k + 1) labelled transition matrix corresponding to a single source
DOAG below them. Any combination of (k − 1) such variations and such a matrix
can be obtained.

Case ak,k+1 = 0. On the other hand we have the matrices such that ak,k+1 = 0. In this
case, the (k−1) first rows of the matrix are still variations of size (n−k). The lower
part (ai,j)k⩽i,j⩽n can be seen as a DOAG with at least two sources because its first
two columns are empty. Note that here, depending of the (k− 1) top variations, we
may have restriction on which DOAGs may appear in the lower part. For instance,
if k = 2 and the first row is (0, 0, 1, 0, 0, . . . , 0), then the DOAG of size (n − 1)
without any edge cannot appear in the lower part.

This dichotomy is pictured in Figure 13.
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Figure 13: Decomposition of the matrices corresponding to DOAGs with k sources

From the above case analysis, we have the following bounds:

vk−1
n−kD

⋆
n−k+1 ⩽ Dn,k ⩽ vk−1

n−kDn−k+1 +O
(
vk−1
n−k(Dn−k+1 −D⋆

n−k+1)
)
.

Thus, by virtue of Theorem 9, we have the following estimates when (n− k)→∞

Dn,k = vk−1
n−kD

⋆
n−k+1

(
1 +O

(
1

n− k

))
, (14)

which allow us to state the following result.

Theorem 15 (Number of sources of uniform DOAGs). When n→∞ and (n− k)→∞,
we have that

Dn,k − vk−1
n−kDn−k+1 = o(Dn,k)

where the little oh is uniform: it is arbitrarily smaller than Dn,k when (n − k) → ∞. In
particular for k constant, we have

Dn,k

Dn

∼ n−(k2).

Proof. The first statement has already been established in equation (14) and the second
one is straightforward to obtain using the equivalent vn ∼ en! for the number of variations.

6.4.2 Number of edges

Another quantity of interests of uniform DOAGs (and graphs in general) is their number
of edges. Whereas uniform labelled DAGs have n2

4
edges in average, we show here that

the number of edges of uniform DOAGs is close to n2

2
. This has to be compared with their

maximum possible number of edges which is
(
n
2

)
= n(n−1)

2
. This makes uniform DOAGs

quite dense objects. The intuition behind this fact is that variations have typically few
zeros in them. Indeed, the expected number of zeros of a uniform variation is given by

1

vn

n∑
p=0

pvn,p =
n!

vn

n∑
p=0

p

p!
=

n!

vn

n∑
p=1

1

(p− 1)!
→

n→∞
1
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where vn,p is the number of variations of size n having exactly p zeros, which is equal
to n!/p! by Lemma 12. Moreover, the tail of their probability distribution is more than
exponentially small:

Pn[nb zeros ⩾ q] =
n!

vn

n∑
p=q

1

p!
=

n,q→∞

e−1

q!

(
1 + o

(
1

n!

))(
1 +O

(
1

q

))
,

where the first error term depends only on n and the second depends on q and is uniform
in n. In fact, it is straightforward to show that the distribution of the number of zeros in
a uniform variation of size n converges in distribution to a Poisson law of parameter 1.

Now, recall that DOAG labelled transition matrices are a sub-class of variation matri-
ces, and that the number of non-zero entries in these matrices corresponds to the number
of edges of the graph. The above discussion should make the following result intuitive.

Theorem 16 (Number of edges of uniform DOAGs). The number of edges of a uniform
DOAG of size n is, in expectation, (

n

2

)
−O(n).

Proof. In terms of labelled transition matrices, the theorem translates into: there is at
most a linear number of zeros strictly above the diagonal in the matrix. This is what we
prove here.

For all integer p ⩾ 0, by inclusion, we have that the number of DOAG labelled
transition matrices with exactly p zeros strictly above the diagonal is upper-bounded
by the number VMn,p of variation matrices with the same property. Moreover, given a
vector (p1, p2, . . . , pn−1) of non-negative integers such that for all i, pi ⩽ i, the number of
such variation matrices with exactly pn−i zeros in the i-th line is

n−1∏
i=1

vi,pi =
n−1∏
i=1

i!

pi!
= ¡(n− 1)!

n−1∏
i=1

1

pi!
.

By summation over all such vectors such that
∑n−1

i=1 pi = p, we get an expression for VMn,p:

VMn,p = ¡(n− 1)!
∑

p1+p2+···+pn−1=p
for all i,0⩽pi⩽i

n−1∏
i=1

1

pi!
⩽ ¡(n− 1)!

∑
p1+p2+···+pn−1=p

for all i,0⩽pi

n−1∏
i=1

1

pi!
·

In the first sum we have the constraint pi ⩽ i because a variation has at most i zeros. The
inequality comes from the fact that we added more terms in the sum by dropping this
constraints. This allows us to interpret the sum as a Cauchy product and can express it
as the p-th coefficient of the power series ex · ex · · · · · ex = e(n−1)x. It follows that

VMn,p ⩽ ¡(n− 1)!
(n− 1)p

p!
·

the electronic journal of combinatorics 30 (2023), #P00 32



As a consequence, we have the following bound for the probability that a uniform DOAG
of size n has at most

(
n
2

)
− q zeros:

Pn[a uniform DOAG has at most

(
n

2

)
− q zeros] ⩽

¡(n− 1)!

Dn

∑
p⩾q

(n− 1)p

p!
· (15)

The sum in the last equation is the remainder in the Taylor expansion of order (q− 1) of
the function ex near zero, evaluated at the point (n − 1). By using the integral form of
this remainder, we have that

∑
p⩾q

(n− 1)p

p!
=

∫ n−1

0

et
(n− 1− t)q−1

(q − 1)!
dt ⩽ en−1

∫ n−1

0

(n− 1− t)q−1

(q − 1)!
dt = en−1 (n− 1)q

q!
·

Furthermore, by setting q = λ(n − 1) for some constant λ > 0, and by using Stirling’s
formula, we get that

(n− 1)q

q!
∼
(
e(n− 1)

q

)q
1√
2πq
∼
(
eλ

λλ

)n−1
1√
2πλn

·

Finally, by using this estimate inside equation (15), and by using Theorem 9 for estimat-
ing Dn, we get that there exists a constant c′ > 0 such that

Pn[a uniform DOAG has at most

(
n

2

)
− λ(n− 1) zeros] ⩽

¡(n− 1)!en−1

Dn

∑
p⩾q

(n− 1)q

q!

⩽
c′√
λ

(
eλ

λλ

)n−1

·

The latter expression is exponentially small as soon as λ > e and dominates the tail of
the probability distribution of the number of zeros strictly above the diagonal in DOAG
labelled transition matrices, which allows to conclude.

7 Uniform sampling of DOAGs by vertices only

The knowledge from the previous section on the asymptotic number of DOAGs with n
vertices can be interpreted combinatorially to devise an efficient uniform random sampler
of DOAGs based on rejection. Since the set of labelled transition matrices of size n is
included in the set of variation matrices of size n, a possible approach to sample uni-
form DOAGs is to sample uniform variation matrices until they satisfy the properties of
Theorem 8, and thus encode a DOAG.

Since the number of variation matrices is close (up to a factor of the order of
√
n) to the

number of DOAGs, the probability that a uniform variation matrix of size n corresponds
to the labelled transition matrix of DOAG is of the order of n− 1

2 . As a consequence, the
expected number of rejections done by the procedure outlined above is of the order of

√
n
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and its overall cost is
√
n times the cost of generating one variation matrix. Moreover, we

will see that variations (and thus variation matrices) are cheap to sample, which makes
this procedure efficient.

This idea, which is a textbook application of the rejection principle, already yields a
reasonably efficient sampler of DOAGs. In particular it is much faster than the sampler
from the previous section based on the recursive method, because it does not have to
carry arithmetic operations on big integers. In this section we show that this idea can
be pushed further using “early rejection”. That is to say we check the conditions from
Theorem 8 on the fly when generating the variation matrix, in order to be able to abort
the generation as soon as possible if the matrix is to be rejected. We will describe how to
generate as few elements of the matrix as possible to decide whether to reject it or not,
so as to mitigate the cost of these rejections.

First, we design an asymptotically optimal uniform sampler of variations in Section 7.1,
and then we show in Section 7.2 how to leverage this into an asymptotically optimal
sampler of DOAGs.

7.1 Generating variations

The first key step towards generating DOAGs, is to describe an efficient uniform random
sampler of variations. We observe that the number of zeros of a uniform variation of size n
obeys a Poisson law of parameter 1 conditioned to be at most n. Indeed,

P[a uniform variation of size n has p zeros] =
vn,p
vn
∝

1{0⩽p⩽n}

p!

by Lemma 12. A possible way to generate a uniform variation is thus to draw a Poisson
variable p of parameter 1 conditioned to be at most n, and then shuffling a size p array of
zeros concatenated with the identity permutation using the Fisher-Yates algorithm [14].
This is described in Algorithm 3.

Algorithm 3 Uniform random sampler of variations based on the rejection principle.

Input: An integer n > 0
Output: A uniform random variation of size n
1: function UnifVariation(n)
2: p ← BoundedPoisson(1, n)
3: A ← [0, 0, . . . , 0, 1, 2, . . . , n− p] ▷ array of length n, starting with p zeros
4: for i = 0 to n− 2 do
5: r ← Unif(Ji;n− 1K)
6: A[r]↔ A[i] ▷ Swap entries of indices r and i

7: return A

Regarding the generation of the bounded Poisson variable (performed at line 2), an
efficient approach is to generate regular (unbounded) Poisson variables until a value less
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than n is found. Indeed, the probability pn that a Poisson variable of parameter 1 is
smaller than n is

pn = e−1

n∑
k=0

1

k!
⩾

2

e
when n ⩾ 1.

Moreover, when n is large we have 1−pn ∼ 1
(n+1)!

. As a consequence, the expected number

of tries of a rejection procedure for sampling conditioned Poisson(1) variables is 1
pn

⩽ e
2
.

The algorithm described by Knuth in [28, page 137] is suitable for our use-case since our
Poisson parameter (1 here) is small. Furthermore it can be adapted to stop early when
values strictly larger than n are found. This is described in Algorithm 4.

Algorithm 4 Adapted Knuth’s algorithm for bounded Poisson simulation

Input: A Poisson parameter λ > 0 and an integer n ⩾ 0
Output: A Poisson variable of parameter λ conditioned to be at most n
1: function BoundedPoisson(λ, n)
2: repeat
3: k ← 0
4: p ← Unif([0; 1])
5: while (k ⩽ n) ∧ (p > e−λ) do
6: k ← k + 1
7: p ← p ·Unif([0; 1])

8: until k ⩽ n
9: return k

NB. The Unif([0; 1]) function generates a uniform real number in the [0; 1] interval.

Note that this algorithm relies on real numbers arithmetic. In practice, approximating
these numbers by IEEE 754 floating points numbers [40] should introduce an acceptably
small error. Indeed, since we only compute products (no sums or subtractions), which
generally have few terms, the probability that they introduce an error should not be too
far from 2−53 on a 64-bits architecture. Of course this is only a heuristic argument. A
rigorous implementation must keep track of these errors. One possible way would be to
use fixed points arithmetic for storing p and to lazily generate the base 2 expansions of
the uniform variables at play until we have enough bits to decide how p and e−λ compare
at line 5. Another way would be to use Ball arithmetic [24, 26] and to increase precision
every time the comparison requires more bits. The proofs of correctness and complexity
below obviously assume such an implementation.

Lemma 17 (Correctness of Algorithm 3). Given an input n > 0, Algorithm 3 produces
a uniform random variation of size n.

Proof. The correctness of Algorithm 4 follows from the arguments given in [28, page 137],
which we do not recall here. Regarding Algorithm 3, the for loop at line 4 implements
the Fisher-Yates [14] algorithm, which performs a uniform permutation of the contents of
the array independently of its contents. In our use-case, this implies that:
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� the number of zeros is left unchanged;
� given an initial array with p zeros as shown at line 3, the probability to get a partic-
ular variation with p zeros is given by the probability that a uniform permutations
maps its first p values to a prescribed subset of size p, that is p!

n!
.

This tells us that, the probability that Algorithm 3 yields a particular variation with p
zeros is

P[BoundedPoisson(1, n) = p] · p!
n!

=
1

p!
∑n

k=0
1
k!

· p!
n!

=
1

vn
.

The minimal “amount of randomness” that is necessary to simulate a probability
distribution is given by its entropy. This gives us a lower bound on the complexity (in
terms of random bit consumption) of random generation algorithms. For uniform random
generation, this takes a simple form since the entropy of a uniform variable that can
take M distinct values is log2(M). This tells us that we need at least log2(vn) random
bits to generate a uniform variation of size n. When n is large, we have log2(vn) =
n log2(n) − n

ln(2)
+ O(log2(n)). The uniform variation sampler we give in Algorithm 3 is

asymptotically optimal in terms of random bit consumption: in expectation, the number
of random bits that it uses is equivalent to log2(vn).

Lemma 18 (Complexity of Algorithm 3). In expectation, Algorithm 3 performs a lin-
ear number of arithmetic operations and memory accesses, and consumes n log2(n) +
o(n log2(n)) random bits.

Proof. The mean of a Poisson variable of parameter 1 being 1, Algorithm 4 succeeds to
find a value smaller or equal to n in a constant number of tries in average, and each try
requires a constant number of uniform variables in average. Furthermore, in order to
perform the comparison p > e−1 at line 5 in the algorithm, we need to evaluate these
uniform random variables. This can be done lazily, and again, it is sufficient to know a
constant number of bits of these variables in average to decide whether p > e−1.

Regarding the shuffling happening at line 4 in Algorithm 3, it needs to draw (n − 1)
uniform integers, respectively smaller or equal to 1, 2, 3, . . . , n − 1. At the first order,
this incurs a total cost in terms of random bits, of

n∑
k=2

log2(k) ∼ n log2(n).

In total, the cost of Algorithm 3 is thus dominated by the shuffling, which allows to
conclude on its random bits complexity.

Regarding the number of arithmetic operations and memory accesses, generating Pois-
son variables performs in constant time using similar arguments. The shuffling part of
the algorithm is clearly linear.

Note that we count integer operations in the above Lemma, thus abstracting away
the cost of these operations. At the bit level an extra log2(n) term would appear to take
into account the size of these integers. This type of considerations is especially important
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when working with big integers as it was the case in Section 2. However here, arithmetic
operations on integers, rather than bits, seems to be the right level of granularity as a
real-life implementation is unlikely to overflow a machine integer.

7.2 A fast rejection procedure

Equipped with the variation sampler described above, we can now generate variation
matrices in an asymptotically optimal way, by filling them with variations of sizes (n −
1), (n− 2), . . . , 3, 2, 1. By checking afterwards whether the matrix corresponds to a valid
DOAGs, and trying again if not, we get a uniform sampler of DOAGs that is only sub-
optimal by a factor of the order of

√
n. This is presented in Algorithm 5. This algorithm

is already more efficient than a sampler based on the recursive method, whilst naive.

Algorithm 5 A simple but sub-optimal uniform random sampler of DOAGs

Input: An integer n > 0
Output: A uniform DOAG with n vertices as its labelled transition matrix
function UnifDOAGNaive(n)

A = (ai,j)1⩽i,j⩽n ← a zero-filled n× n matrix
repeat

for i from 1 to n− 1 do
(ai,j)i<j⩽n ← UnifVariation(n− i)

until A encodes a DOAG
return The DOAG corresponding to A

Checking the validity of a matrix at line 6 corresponds to checking the conditions given
in Theorem 8 at page 19. We do not provide an algorithm for this here, as the goal of
this section is to iterate upon Algorithm 5 to provide a faster algorithm and get rid of
the
√
n factor in its cost. We will see in the following that checking these conditions can

be done in linear time.

Remark. Note that the memory footprint of a DOAG is of the order of n2 since it
typically has n2

2
edges as shown in the previous section, so the number of edges might

be a more natural notion of size for those objects when talking about complexity. If we
express the complexity of Algorithm 5 in terms of the number of edges m of the generating
DOAG, we get that it performs O(m 4

√
m) memory accesses and consumes O(m 4

√
m log n)

random bits. Under this lens, the extra
√
n factor incurred by the rejection is actually

only a fourth root of the more natural size parameter m.

As we can see in Theorem 8, the conditions that a variation matrix must satisfy to
be a labelled transition matrix concern the shape of the boundary between the zero-filled
region between the diagonal and the first positive values above the diagonal. Moreover,
we have seen in Theorem 16 that uniform DOAGs tend to have close to

(
n
2

)
edges and

thus only a linear number of zeros above the diagonal of their labelled transition matrix.
We can thus expect that the area that we have to examine to have access to this boundary
should be small. This heuristic argument, hints at a more sparing algorithm that would
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start by filling the matrix near the diagonal and check its validity early, before generating
the content of the whole matrix. This idea, of performing rejection as soon as possible in
the generation process, is usually referred to as “anticipated rejection” and also appears
in [10] and [1] for instance.

To put this idea in practice, we need to implement lazy variation generation, to be
able to make progress in the generation of each line independently, and to perform the
checks of Theorem 8 with as little information as necessary.

Ingredient one: lazy variations Fortunately, Algorithm 3 can be easily adapted for
this purpose thanks to the fact that the for loop that implements the shuffle progresses
from left to right in the array. So a first ingredient of our optimised sampler is the
following setup for lazy generation:

� for each row of the matrix (i.e. each variation to be sampled), we draw a Poisson
variable pi of parameter 1 and bounded by (n− i);

� drawing the number at position (i, j), once we have drawn all the numbers of lower
coordinate in the same row, can be done by selecting uniformly at random a cell
with higher or equal coordinate on the same row and swapping their contents.

This is illustrated in Figure 14.

pi = 3 3 90

3 generated
elements

cell (i, i+4) is obtained
by a random swap

two zeros remain to be discovered

Figure 14: Ingredient one of the fast rejection-based algorithm: variations can be lazily
generated. In the example, the three first elements of the variation at row i are known.
When we need to generate its fourth element, we perform a swap of ai,i+4 with a uniform
cell of index j ⩾ i+ 4.

Ingredient two: only one initialisation A straightforward adaptation of Algorithm 3
unfortunately requires to re-initialise the rows after having drawn the Poisson variable (see
line 3 of Algorithm 3) at each iteration of the rejection algorithm. This is costly since
about n2/2 numbers have to be reset. It is actually possible to avoid this by initialising
all the rows only once and without any zeros. Only at the end of the algorithm, once a
full matrix have been generated, one can re-interpret the pi largest numbers of row i, for
all i, to be zeros. This is pictured in Figure 15.

Ingredient three: column by column checking The last detail that we need to
explain is how to check the conditions of Theorem 8. As a reminder

� for each 2 ⩽ j ⩽ n we need to compute the number bj = max {i | ai,j > 0} (or 0 if
this set is empty);
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pi = 3 3 96 1 10 4 827 5

Figure 15: Ingredient two of the fast rejection-based algorithm: the zeros of the matrix
need not be explicitly written. Instead, we interpret the numbers strictly larger than (n−
i− pi) as zeros. In this example (n− i) = 10 and pi = 3 so the numbers 8, 9, and 10 are
seen as zeros.

� we must check whether this sequence is weakly increasing;
� and whenever bj+1 = bj, we must check that abj ,j < abj ,j+1.

A way of implementing this is to start filling each column of the matrix from bottom to
top, starting from the column j = 1 and ending at column j = n. For each column, we
stop as soon as either a non-zero number is found or the constraints from Theorem 8 are
violated. In order to check these constraints, while filling column j from bottom (i = j−1)
to top, we halt as soon as either the cell on the left of the current cell, or the current cell
is non-zero. The case when the left cell is non-zero corresponds to when i = bj−1 and the
conditions of Theorem 8 can be checked. Recall that, per the previous point, the zero test
in row i is actually x 7→ x > n − i − pi. We shall prove that this process uncovers only
a linear number of cells of the matrix, thus allowing to reject invalid matrices in linear
expected time. This idea is pictured in Figure 16.

The algorithm Putting all of this together yields Algorithm 6 (on page 47) to generate
a uniform DOAG labelled transition matrix using anticipated rejection. The algorithm
is split into two parts. First, the repeat-until loop between lines 5 and 20 implements
the anticipated rejection phase. At each iteration of this loop, we “forget” what has been
done in the previous iterations, so that A is an arbitrary matrix satisfying the following
two conditions

i ⩾ j =⇒ ai,j = 0 (16)

∀ 1 ⩽ i < n, {ai,j | i < j ⩽ n} = J1;n− iK. (17)

The contents of the (p)1⩽i<n vector is also forgotten and each value is to be drawn again
before any access. The while loop at line 8 implements the traversal of the matrix de-
scribed above: at each step, the value of the ai,j is drawn and the conditions of Theorem 8
are checked before proceeding to the next step. The array (si)1⩽i⩽n stores the state of
each lazy variation generator: si contains the value of the largest j such that ai,j has been
drawn. The second part of the algorithm, starting from line 21, completes the generation
of the matrix once its near-diagonal part is known and we know no rejection is possible
any more. This includes replacing some values of the matrix by 0 because of ingredient
two above.

Lemma 19 (Correction of Algorithm 6). Algorithm 6 terminates with probability 1 and
returns a uniform random DOAG labelled transition matrix.
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Figure 16: Ingredient three of the fast rejection-based algorithm: the exploration process
of the cells of the matrix is dictated by the following algorithm. We proceed column by
column, from bottom to top, and we advance to the next columns as soon as we discover
a non-zero cell, or see one on our left. In the pictures, the bullet • represent the current
cell, the grey area represents the cells that have not yet been drawn and the thick red
lines underline the lowest non-zero cell of each column, as before. Depending on the value
that is drawn in the current cell, we either move up or to the next column. Whenever a
non-zero cell is on our left, we can decide whether to reject or to keep generating.

This result is a consequence of Algorithm 5 and Algorithm 6 implementing the exact
same operations, only in a different order and with an earlier rejection in the latter
algorithm. The key characteristic of this new algorithm is that is only needs to perform
a linear number of swaps in average to decide whether the reject the matrix or not. As
a consequence it is asymptotically optimal in terms of random bits consumption and it
only performs about n2/2 swaps to fill the n× n upper triangular matrix.

Theorem 20 (Complexity of Algorithm 6). In average, in order to generate a uniform
DOAG with n vertices, Algorithm 6 performs n2

2
+ O(n3/2) swaps in the matrix, and

consumes n2

2
log2(n) +O(n3/2 log2(n)) random bits.

Proof. In the rejection phase, in each column, we draw a certain number of zeros and
at most one non-zero value before deciding whether to reject the matrix or to proceed
to the next column. As a consequence, when lazily generating a variation matrix, we
see at most (n − 1) non-zero values and a certain number of zeros that we can trivially
upper-bound by the total number of zeros (strictly above the diagonal) in the matrix.

The number of variations of size n with exactly p zeros (with 0 ⩽ p ⩽ n) is given by n!
p!
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by Lemma 12. As a consequence, the expected number of zeros of a variation is given by

n∑
p=0

p · n!
p!
· 1
vn

=

(
e−1 + o

(
1

n!

)) n−1∑
p=0

1

p!
= 1 +O

(
1

n!

)
.

It follows that the expectation of the total number of zeros of variation matrix of size n
is n + O(1). This proves the key fact that, in expectation, we only discover a linear
number of cells of the matrix in the repeat-until loop. Since, in expectation, we only
perform O(

√
n) iteration of this loop, it follows that we only perform O(n3/2) swaps

there. Moreover, one swap costs O(log2(n)) random bits, which thus accounts for a total
of n3/2 log2(n) random bits in this loop.

In order to complete the proof, it remains to show that the for loops at the end of
Algorithm 6 contribute to the leading terms of the estimates given in the Theorem. The
first inner for loop at line 22 replaces, among the already discovered values, the zeros
encoded by numbers above the n− i−pi threshold by actual zeros. It is worth mentioning
that this only accounts for linear number of operations in total, spanned over several
iteration of the outer loop (at line 21). The second inner for loop at line 24 completes
the generation of the matrix. The total number of swaps that it performs (and thus the

number of uniform variables it draws) is n(n−1)
2

minus the number of already discovered
cells, that is n2/2 +O(n). This allows to conclude the proof.

By Theorem 9 on page 22 in the previous section, we have that log2(Dn) ∼ n2

2
log2(n).

This shows that Algorithm 6 is asymptotically optimal in terms of random bit consump-
tion. Moreover, filling a n× n matrix requires a quadratic number of memory writes and
the actual number of memory access made by our algorithm is of this order too.

8 Conclusion and perspectives

In this paper, we have studied the new class of directed ordered acyclic graphs, which are
directed acyclic graphs endowed with an ordering of the out-edges of each of their vertices.
We have provided a recursive decomposition of DOAGs that is amenable to the effective
random sampling of DOAGs with a prescribed number of vertices, edges and source using
the recursive method from Nijenhuis and Wilf. Using a bijection with a class of integer
matrices, we also have provided an equivalent for the number of DOAGs with n vertices
and designed a uniform random sampler for DOAGs with n vertices and any number of
edges. This second sampler is asymptotically optimal, both in terms of memory accesses
and random bits consumption.

We have also showed that our approach allows to approach classical labelled DAGs
and have obtained a new recurrence formula for their enumeration. The important par-
ticularity of this new formula is that it is amenable to effective random sampling when
the number of edges is prescribed, which was not the case for previously known formulas.
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Perspectives

On DOAGs So far, we have only approached DOAGs via enumerative tools and ad.
hoc. asymptotic techniques. A common and powerful tool in combinatorics is the use of
generating function to tackle not only asymptotic estimation, but also the convergence
in distribution of parameters, such as the number of edges. The book [15] is a reference
on this topic. Classical approaches using ordinary, exponential, or even graphical ([9])
generating functions fail in our context due to the super factorial behaviour of the number
of DOAGs. It remains an open question whether it is possible to design a generating
function approach to our objects, which could help obtaining finer estimates, not only
over Dn, but also over the low of the number of edges.

Multi-graph variant An interesting question that is left open by our work is the case
of the multi-graph variant of this model: what happens if multiple edges are allowed
between two given vertices? This makes the analysis more challenging since there is now
an infinite number of objects with n vertices. We thus must change our point of view
and take the number m of edges into account in addition to, or instead of, the number
of vertices. Estimating the number and behaviour of DOAGs as well as their multi-graph
counterpart, when both parameters n and m grow remains an open question and will
certainly yield very different results depending on how n and m grow in relation to each
other. We argue that the model of multi-edge DOAGs is natural, maybe even more so
than that of DOAGs, since they encode (partially) compacted plane trees. Quantitative
aspects of tree compaction, in particular the typical compression rate, has been studied
in the past [16] in a general setting. However, the dual point of view that consists in
studying already compacted structures directly is a more recent topic, see [12] and [21]
for instance. The class of multi-edge DOAGs generalises the classes studied in those two
papers. Moreover, being able to sample them efficiently would give a tool to reach every
possible case (including those with double edges) when testing programs manipulating
compacted trees (such as compilers) via random generation.

Another interesting question is that of the connectivity. We do not provide a way
to count connected DOAGs directly here. However we have already proved that, in the
uniform model, they are connected with high probability since they have only one source
with high probability. Moreover, since Dn grows extremely fast, we can also foresee that
a uniform DOAG of size n with two connected components will typically have one tiny
component of size 1 and a big component of size n−1, and that the asymptotic estimations
of such graphs is straightforward. This implies that sampling a uniform connected DOAG
with n vertices is already possible, and efficient, by rejection and the question of their
direct enumeration is thus mostly of mathematical interest.

Classical labelled DAGs Finally, it is also natural to wonder whether our successful
approach at efficiently sampling DOAG applies to labelled DAGs. Of course, the asymp-
totics of DAGs is known [36]. But if a matrix encoding similar to ours is feasible, that is
an encoding whose combinatorial properties are understood well enough to avoid intro-
duction any bias, then it might be possible to devise an efficient, pre-computation-free,
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uniform sampler for DAGs.
A starting point in this direction is the fact that uniform labelled DAGs have, in aver-

age, n2

4
edges. In terms of (upper triangular) adjacency matrices, this means that about

half the cells in the upper part of the matrix are non-zero. This is, in a sense, much
less dense than for DOAGs. However, this is still dense enough in the sense that the
DAG analogue of the red thick path in our figures (described by the sequence (bj)1⩽j⩽n

in Sections 5 and 7) can be expected to stay close to the diagonal too. As a consequence,
the approach proposed in Section 7 for the random generation of DOAGs is still applica-
ble, provided we have an efficient way to sample those paths. Indeed, our fast-rejection
procedure in Algorithm 6 can be seen as the combination of two algorithms:

1. an algorithm to sample the path (bj)1⩽j⩽n under the distribution induced by DOAGs;
2. and the filling of the remaining cells of the matrix by completing the random vari-

ation in reach row.

In order to design a similar approach for DAGs, we need a way to sample the (bj)1⩽j⩽n

paths (induced by the uniform distribution on DAGs) and the second step of the algorithm
would be to fill the rest of the matrix with Bernoulli random variables of parameter 1

2
.

Our recent ongoing work on this topic suggests that those paths can indeed be sampled
efficiently, which will be investigated further in the near future.

Notable is that the approach presented in [31] can also be seen as a way to work with
matrices while maintaining uniformity by using a combinatorial encoding using ordered
integer partitions. A caveat however is that their approach still requires a costly pre-
processing, which we seek to avoid using a rejection-based approach.
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Algorithm 6 An optimised uniform random sampler of DOAGs based on anticipated
rejection

Input: An integer n > 0
Output: A uniform DOAG with n vertices, encoded as its labelled transition matrix.
1: function UnifDOAGFast(n)
2: A = (ai,j)1⩽i,j⩽n ← the strictly upper triangular matrix (1{j>i} · (j − i))

1⩽i,j⩽n

3: (pi)1⩽i<n ← uninitialised array
4: (si)1⩽i<n ← uninitialised array
5: repeat ▷ Anticipated rejection phase
6: (i, j) ← (1, 2) ▷ position of the current cell
7: p1 ← BoundedPoisson(n− 1)
8: while j ⩽ n do
9: r ← Unif(Jj;nK)
10: ai,r ↔ ai,j
11: si ← j
12: if (ai,j−1 ⩽ n− i− pi) ∧ (ai,j ̸∈ Jai,j−1 + 1;n− i− piK) then
13: break ▷ Rejection
14: else if ai,j ⩽ n− i− pi then
15: j ← j + 1
16: i ← j − 1
17: pi ← BoundedPoisson(1, n− i)
18: else
19: i ← i− 1

20: until j > n
21: for i = 1 to n− 2 do ▷ Completion of the matrix
22: for j = i+ 1 to si do
23: if ai,j > n− i− pi then ai,j ← 0

24: for j = si + 1 to n do
25: r ← Unif(Jj;nK)
26: ai,r ↔ ai,j
27: if ai,j > n− i− pi then ai,j ← 0

28: return A
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