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State of the art

Labelled DAGs:
- Counting by number of vertices: [Rob73]
- Counting by number of edges: [Ges96] e
- Uniform sampling: [MDBO01], [KM15] e

Problems:
e Inclusion-exclusion

e No or little control over

Unlabelled DAGs: the number of edges

- Counting by vertices and sources: [Rob77] e



- Finer control over the number of edges?

- Unlabelled structures / other ways of
breaking symmetries?
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A new kind of DAG

Directed Ordered Acyclic Graphs

DOAG = Unlabelled DAG
+ a total order on the outgoing edges of each vertex
+ a total order on the sources
+ only one sink
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. Compacted trees [GGKW20; EFW21] N /X\ /><\ ~ /X\ >
are DOAGS /X\ y x 5> X
/
Yy x Yy \$

(also known as hash-consing in func-
tional programming);

- Real-life implementations of DAGs —
have an ordering;
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Recursive decomposition
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b
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Recurrence formula

Counting formula

Dnmr = #{DOAGs with n vertices, m edges and R sources}

n—RkR—s\.[i+s
— Z Dn—1,m—f—s,k+s—1< i >I!< i )

i4+s>0

Complexity: computing all Dy m for n,k < N .and m < M costs:
- O(N“M) arithmetic operations;
- on integers of bit-size O(Mlog M).

In practice: about 400 edges in a few minutes.
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Random sampling = 3nitnuod

Do the same, but backwards!
1. Select (i,s) with |
probability Dn_1m-izspesa("E)(H).

Dn,m,}?
sample a DOAGh_1,m—i—s kts—1
connect the s largest sources;
connect i random internal vertices;

order the edges.

L U

Complexity: O (3=, yerex d2) = O(M?).

out-degree of v

In practice: about 400 edges in a few ms.



Conclusion

- New model
- New way of counting
- Control over the number of edges

Antoine Genitrini, Martin Pépin, and Alfredo Viola. “Unlabelled ordered DAGs
and labelled DAGs: constructive enumeration and uniform random sampling”.
In: XI Latin and American Algorithms, Graphs and Optimization Symposium.
Eslevier. 2021
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What about labelled DAGs?

Idea: mark one source, and remove it.

Vn.mkr = #DAGs (one sink, k sources)
k- Vn,m,/? -

R+s—1\/n—-s—Rk
n- Z Vn—1,m—i—s,/?+s—1( S ) ( i )

I+s>0
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Consequences on labelled DAGs

- Counting formula without inclusion-exclusion;
- Effective sampler with fixed number of edges and vertices.
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What asymptotics?

Asymptotics: (approximately) how many large DOAGs are there
when n,m — oo?

Problem: relative growth of n and m?
- dense case:m ~c- (})?
- sparse case:m ~ c-n?
- are there critical values for ¢?

Simplification: Drop one parameter: only count by vertices.

D, def #{DOAG with n vertices, one source.}
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Matrix encoding

1.2 3 4 5 6 7 8 9 10 1
1. strict upper triangular matrix; 1 Iz 3 1
2. there is an element at (1, 2); T 1(3]5 2 4|2
3. increasing numbers above 2 3
orange lines; 3 124
4. orange lines go down. 2 1|5
1|2 6
1 7
18
2|19
110
11

15
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Asymptotic result

Number of mono-source DOAGs

C
Dy ~ —e"in-1l

n—oo \/ﬁ

for ¢ ~ 0.30256 and where jm! = T],_, kL.

1 ‘ 4 6 7/3|5 ~ (n —1)! possible rows
2|4|3|5 1 ~ (n —2)! possible rows
3|5 412 ~ (n —3)! possible rows = in — 11
411|523 ~ (n — 4)! possible rows
3 1|2 etc

16



Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

17



Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

17



Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

[6[1] [s] [2]4] [3] = [e[1]s]2]sa]a]x] [ | |

17



Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

[6[1] [s] [2]4] [3] = [e[a]s[2]s]a]x| [ [ |

Variation = SEQ(Z) * SET(Z2)

17



Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
[6[1] [s[ [2]a] [3] = [e[1[s[2]a]a]x[ [ | |
Variation = SEQ(Z) * SET(Z)

V(2) = (1-2)7'¢

17



Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

[6[1] [s] [2]4] [3] = [e[1][s[2]s]a]x] [ [ |

Variation = SEQ(Z) * SET(Z)
V(2) = (1-2)7 '
Vi = e-nl—o(1)

17



Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
[6[1] [s[ [2]e] [3] = [e[1][s[2]a]a]x[ [ | |
Variation = SEQ(Z)  * SET(Z)
V(2) = (1-2)7'e?
Vi = e-nl—o(1)

#{DOAG matrices} = #{collections of rows} < #{collections of variations}

17



Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
[6[1] [s[ [2]e] [3] = [e[1][s[2]a]a]x[ [ | |
Variation = SEQ(Z)  * SET(Z)
V(2) = (1-2)7'e?
Vi = e-nl—o(1)

#{DOAG matrices} = #{collections of rows} < #{collections of variations}

17



Proof sketch (2/3)

The plan: 1. Upper bound

2. Lower bound 3. Bootstrapping

{DOAG matrices} D

g

£

2l

(constraints are automatically satisfied)




Proof sketch (2/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
BT
=
{DOAG matrices} D 7&%_ (constraints are automatically satisfied)
7=

AT P12 7] = ve - vic




Proof sketch (2/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
BT
=
{DOAG matrices} D 7&%_ (constraints are automatically satisfied)
7=

#’75’?‘?\?\?\?\?\?\?\:vk—vM:e.k!.<1—%—o((k_11)!)>




Proof sketch (2/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

&

# 3
2l

{DOAG matrices} D A (constraints are automatically satisfied)




Proof sketch (2/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
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DOAG matrices} D A (constraints are automatically satisfied)
Z
7=

AT - - = ok (1= -0 ()

—1
Dn>e”‘1in—1!n1_[ ujto 1 >e’7“m—1!é for some A > 0
= LU\"7x k_1))) = n
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Proof sketch (2'/3)

The plan: 1. Upper bound 2. Better lower bound 3. Bootstrapping

(AT (T, (AT,
o ;«é;«; T L
{DOAG matrices} D 7&%% + ¢¥~ + 7é5r +
7 Z 7
D, > A"~ In(n) &1 1)
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Pn - L ( ) -~ 'Dn S 1
en=1in—1l n
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Random sampling again!

Corollary
Dp
#{collections of variations of length 1,2,...,n — 1}

c-n

NI —

Rejection sampling: draw collections of variations until they correspond to a
valid DOAG matrix.

(Naive) complexity: O(v/n - n*In(n)) random bits
Generating one variation: ~ nlog,(n) random bits.

Better complexity:
Cost(one full generation) + #rejections x Cost(one failed generation)
2

= % log,(n) + O(v/n - Cost(one failed generation))
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Early rejection

(2?2 (?2(?2 2?2?77

2
Complexity = O(nIn(n)) Total complexity = % log,(n) + O(v/n - nin(n))
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- Law of the number of edges?
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- Law of the number of edges?
- Multigraph equivalent: DOAMG
- Identical to compacted plane trees
- We have to count by edges
- Simpler recurrence relation
- No asymptotics (yet)
- Collaborations with Alfredo Viola (Montevideo) and Michael Wallner (TU Wien)
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> New model: DOAG
> New way of counting
> Control over the number of edges
> When forgetting edges:
> (Fun?) asymptotic results
> Optimal uniform sampler

<I> https://github.com/Kerl13/randdag
® https://wkerl.me
&< martin.pepin@lipn.univ-parisi3.fr
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