DIRECTED ORDERED ACYCLIC GRAPHS

ENUMERATION, UNIFORM SAMPLING, AND LINKS WITH CLASSICAL LABELLED DAGS

Martin Pépin

joint work with Alfredo Viola & Antoine Genitrini

November 8, 2022 l IPN
Séminaire CALIN . :

Directed Acyclic Graphs

Directed Acyclic Graph (DAG)

- Afinite set of vertices Veg. {a,b,c,...,j};
- a set of directed edges E C V x V;
- no cycles.

Directed Acyclic Graphs

Directed Acyclic Graph (DAG)

- Afinite set of vertices Veg. {a,b,c,...,j};
- a set of directed edges E C V x V;
- no cycles.

Without labels: Unlabelled DAGs o/

Directed Acyclic Graphs

Directed Acyclic Graph (DAG)

- Afinite set of vertices Veg. {a,b,c,...,j};
- a set of directed edges E C V x V;
- no cycles.

Without labels: Unlabelled DAGs o/ -
Sin

Why DAGs?

Omnipresent data structure:
- Encoding partial orders in scheduling problems;
- Git histories;
- Bayesian networks in probabilities;
- Genealogy trees (those are not trees!);
- Class inheritance in OOP..

Why DAGs?

Omnipresent data structure:
- Encoding partial orders in scheduling problems;
- Git histories;
- Bayesian networks in probabilities;
- Genealogy trees (those are not trees!);
- Class inheritance in OOP..

State of the art

Labelled DAGs:
- Counting by number of vertices: [Rob73]

State of the art

Labelled DAGs:
- Counting by number of vertices: [Rob73]
- Counting by number of edges: [Ges96]

State of the art

Labelled DAGs:
- Counting by number of vertices: [Rob73]
- Counting by number of edges: [Ges96]
- Uniform sampling: [MDBO1], [KM15]

State of the art

Labelled DAGs:
- Counting by number of vertices: [Rob73]
- Counting by number of edges: [Ges96]
- Uniform sampling: [MDBO1], [KM15]

Unlabelled DAGs:
- Counting by vertices and sources: [Rob77]

State of the art

Labelled DAGs:
- Counting by number of vertices: [Rob73]
- Counting by number of edges: [Ges96] e
- Uniform sampling: [MDBO1], [KM15]

Problems:
e Inclusion-exclusion

Unlabelled DAGs:
- Counting by vertices and sources: [Rob77] e

State of the art

Labelled DAGs:
- Counting by number of vertices: [Rob73]
- Counting by number of edges: [Ges96] e
- Uniform sampling: [MDBO01], [KM15] e

Problems:
e Inclusion-exclusion

e No or little control over

Unlabelled DAGs: the number of edges

- Counting by vertices and sources: [Rob77] e

- Finer control over the number of edges?

- Unlabelled structures / other ways of
breaking symmetries?

Outline of the presentation

Background

Directed ordered acyclic graphs
5 Definition and recursive decomposition

Intermezzo: labelled DAGs

b another way of counting

Asymptotic analysis
b Matrix encoding
5 Asymptotic result
> Faster sampler

A new kind of DAG

Directed Ordered Acyclic Graphs

DOAG = Unlabelled DAG
+ a total order on the outgoing edges of each vertex
+ a total order on the sources
+ only one sink

< <
N /
. Compacted trees [GGKW20; EFW21] N /X\ /><\ ~ /X\ >
are DOAGS /X\ y x 5> X
/
Yy x Yy \$

< <
N /
. Compacted trees [GGKW20; EFW21] N /X\ /><\ ~ /X\ >
are DOAGS /X\ y x 5> X
/
Yy x Yy \$

(also known as hash-consing in func-
tional programming);

< <
N /
. Compacted trees [GGKW20; EFW21] N /X\ /><\ ~ /X\ >
are DOAGS /X\ y x 5> X
/
Yy x Yy \$

(also known as hash-consing in func-
tional programming);

- Real-life implementations of DAGs —
have an ordering;

Recursive decomposition

Idea: remove the smallest source and see what is left.

Recursive decomposition

Idea: remove the smallest source and see what is left.

.
1 2 1
3 2
3
—> ﬁ@

Recursive decomposition

Idea: remove the smallest source and see what is left.

1
1 2 1
3 2 1
4 3
3 2
— — —

Recursive decomposition

Idea: remove the smallest source and see what is left.

3 2 1

|
J
|

Recursive decomposition

n vertices, m edges, k sources

Recursive decomposition

n vertices, m edges, k sources

Recursive decomposition

.."h,

e,

S S
h' 'ﬂ "
< .
)

1
2
4

n vertices, m edges, k sources

Recursive decomposition

n vertices, m edges, k sources

Recursive decomposition

} edges to new sources

n vertices, m edges, k sources

Recursive decomposition

n vertices, m edges, k sources

edges to new sources

i edges to internal nodes
5 ("F7%) choices

Recursive decomposition

."~
S s,

.
.

Q .,

1
/\ \
N edges to new sources

i edges to internal nodes
5 ("F7%) choices

n vertices, m edges, k sources

b

(n —1) vertices, (m — i — s) edges, (k+ s — 1) sources

Recursive decomposition

permute the , edges

A interleave " with
5 p ¢ 5 i1("F*) choices

1
/\ \
N edges to new sources

i edges to internal nodes
5 ("F7%) choices

n vertices, m edges, k sources

b

(n —1) vertices, (m — i — s) edges, (k+ s — 1) sources

Recurrence formula

Counting formula

Dnmr = #{DOAGs with n vertices, m edges and R sources}

n—RkR—s\.[i+s
— Z Dn—1,m—f—s,k+s—1< i >I!< i)

i4+s>0

Recurrence formula

Counting formula

Dnmr = #{DOAGs with n vertices, m edges and R sources}

n—RkR—s\.[i+s
— Z Dn—1,m—f—s,k+s—1< i >I!< i)

i4+s>0

Complexity: computing all Dy m for n,k < N .and m < M costs:
- O(N“M) arithmetic operations;
- on integers of bit-size O(Mlog M).

Recurrence formula

Counting formula

Dnmr = #{DOAGs with n vertices, m edges and R sources}

n—RkR—s\.[i+s
— Z Dn—1,m—f—s,k+s—1< i >I!< i)

i4+s>0

Complexity: computing all Dy m for n,k < N .and m < M costs:
- O(N“M) arithmetic operations;
- on integers of bit-size O(Mlog M).

In practice: about 400 edges in a few minutes.

Random sampling = 3nitnuod

Do the same, but backwards!

Random sampling = 3nitnuod

Do the same, but backwards!
G 1. Select (i, s) with
) prObab|l|ty Dn—me/'fs,thst(n_’,'?_s)’-!(l-*j—s).

Dn,m,}? !

Random sampling = 3nitnuod

Do the same, but backwards!

i "'."\‘- 1. Select (i,s) with
) . n—kR—sY: [i+s
’ probability D”*“’”*/*Svkgsnf;(h (s);
2 2. sample a DOAG_1 m—i—s kt+s—1;
4

Random sampling = 3nitnuod

Do the same, but backwards!

1.

Select (i, s) with
n—k—s\: [i+s
probability Doy meizspesr ("T175)t ().

Dn,m,}? !

2. sample a DOAG_1 m—i—s kt+s—1;
3. connect the s largest sources;

Random sampling = 3nitnuod

Do the same, but backwards!

1.

Select (i, s) with
n—k—s\: [i+s
probability Doy meizspesr ("T175)t ().

Dn,m,}? !

2. sample a DOAG_1 m—i—s kt+s—1;
3. connect the s largest sources;
4. connect i random internal vertices;

Random sampling = 3nitnuod

Do the same, but backwards!

1.

L U

Select (i, s) with
n—k—s\:[i+s
probablllty Dn—me/'fs,kstfW(i)I!('*/.')’

Dn,m,}?

sample a DOAG_1 m—i—s kt+s—1;
connect the s largest sources;
connect i random internal vertices;
order the edges.

Random sampling = 3nitnuod

Do the same, but backwards!

1.

L U

Select (i, s) with

probability Zi=e==ssse (),
sample a DOAGn—1,m—i—,s:k+s—1;
connect the s largest sources;
connect i random internal vertices;

order the edges.

Random sampling = 3nitnuod

Do the same, but backwards!
1. Select (i,s) with |
probability Dn_1m-izspesa("E)(H).

Dn,m,}?
sample a DOAGh_1,m—i—s kts—1
connect the s largest sources;
connect i random internal vertices;

order the edges.

L U

Complexity: O (3=, yerex d2) = O(M?).

out-degree of v

Random sampling = 3nitnuod

Do the same, but backwards!
1. Select (i,s) with |
probability Dn_1m-izspesa("E)(H).

Dn,m,}?
sample a DOAGh_1,m—i—s kts—1
connect the s largest sources;
connect i random internal vertices;

order the edges.

L U

Complexity: O (3=, yerex d2) = O(M?).

out-degree of v

In practice: about 400 edges in a few ms.

Conclusion

- New model
- New way of counting
- Control over the number of edges

Antoine Genitrini, Martin Pépin, and Alfredo Viola. “Unlabelled ordered DAGs
and labelled DAGs: constructive enumeration and uniform random sampling”.
In: XI Latin and American Algorithms, Graphs and Optimization Symposium.
Eslevier. 2021

i

Outline of the presentation

Background

Directed ordered acyclic graphs

5 Definition and recursive decomposition

Intermezzo: labelled DAGs
b another way of counting
Asymptotic analysis
b Matrix encoding

5 Asymptotic result
> Faster sampler

12

What about labelled DAGs?

Idea: mark one source, and remove it.

Vn.mkr = #DAGs (one sink, k sources)
k- Vn,m,/? -

12

What about labelled DAGs?

Idea: mark one source, and remove it.

Vn.mkr = #DAGs (one sink, k sources)
k- Vn,m,/? -

R+s—1\/n—-s—Rk
n- Z Vn—1,m—i—s,/?+s—1(S) (i)

I+s>0

12

Consequences on labelled DAGs

- Counting formula without inclusion-exclusion;
- Effective sampler with fixed number of edges and vertices.

13

Outline of the presentation

Background

Directed ordered acyclic graphs

5 Definition and recursive decomposition

Intermezzo: labelled DAGs
b another way of counting
Asymptotic analysis
b Matrix encoding

5 Asymptotic result
5 Faster sampler

14

What asymptotics?

Asymptotics: (approximately) how many large DOAGs are there
when n,m — oo?

14

What asymptotics?

Asymptotics: (approximately) how many large DOAGs are there
when n,m — oo?

Problem: relative growth of n and m?
- dense case:m ~c- (})?
- sparse case:m ~ c-n?
- are there critical values for ¢?

14

What asymptotics?

Asymptotics: (approximately) how many large DOAGs are there
when n,m — oo?

Problem: relative growth of n and m?
- dense case:m ~c- (})?
- sparse case:m ~ c-n?
- are there critical values for ¢?

Simplification: Drop one parameter: only count by vertices.

D, def #{DOAG with n vertices, one source.}

14

Matrix encoding
7 8 9 10 M

—> | [1]2]3

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N
1]2]3

=

O 0 N o o B~ o w N

=
o

—
s

15

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N
1]2]3

=

O 0 N o o B~ o w N

=
o

—
s

15

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N
1]2]3

=

O 0 N o o B~ o w N

=
o

—
s

15

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N
1]2]3

=

O 0 N o o B~ o w N

=
o

—
s

15

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N

1]2]3 1
] 1(3[s| [2] [a]:2
2 3

3 1024

2 15

— 102 |s
7

8

9

10

1

15

Matrix encoding

1]2]3 1

] 1(3[s| [2] [a]:2

2 3

3 1]2]4

2 15

12 6

9 A —_ 7
«“' 8

8 10 9
10

1 .

15

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N

1]2]3 1
] 1(3[s| [2] [a]:2
2 3

3 124

2 15

102 |s

7

— 18
9

10

1

15

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N1

1]2]3 1

1(3(5| 2| |42

2 3

3 1024

2 1|5

12 6

e’ 7

© 18
S0

kY — 2(1|9

3 10

11 .

15

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N

1]2]3 1

N 1(3|s| [2] [a]>2

2 3

3 1)2]4

2 5

112] |6

7

%0 18
2(1]9

. —_ 110
11

15

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N

-
N
w

-
N
O O N O U W N

=
N
(@)

=5
=

15

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N

1. strict upper triangular matrix; 123 1
] 1(3[s5] [2] [a]>2
2 3

3 1|24

2 15

12 6

1 7

1|8

219

110

1

15

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N

1. strict upper triangular matrix; 1]Iz 3 1
2. there is an element at (1, 2); T 1/3|5 2 4|2
2 3

3 1)2|4

2 15

12 6

1 7

1|8

219

110

1

15

Matrix encoding

17 2 3 4 5 6 7 8 9 10 N
1. strict upper triangular matrix; 1 Iz 3 1
2. there is an element at (1, 2); T 1|35 2 4|2
3. increasing numbers above 2 3
orange lines; 3 124
2 15
1|2 6
7
18
2|19
110
1

15

Matrix encoding

1.2 3 4 5 6 7 8 9 10 1
1. strict upper triangular matrix; 1 Iz 3 1
2. there is an element at (1, 2); T 1(3]5 2 4|2
3. increasing numbers above 2 3
orange lines; 3 124
4. orange lines go down. 2 1|5
1|2 6
1 7
18
2|19
110
11

15

Asymptotic result

Number of mono-source DOAGs

D n=n—1l

C
Sy

for c 2 0.30256 and where im! = [],_, R\.

16

Asymptotic result

Number of mono-source DOAGs

NGO
w

g 0N
- -
N WIN = U

16

Asymptotic result

Number of mono-source DOAGs

~ (n —1)! possible rows

NGO
w

g N
- -
N WIN = U

16

Asymptotic result

Number of mono-source DOAGs

C
Dy ~ —e"in-1l

n— o0 \/ﬁ

for c 2 0.30256 and where im! = [],_, R\.

1 ‘ 4 6 7/3|5 ~ (n —1)! possible rows
2|4|3|5 1 ~ (n —2)! possible rows
3|5 4 | 1|2

411|523
3 12

16

Asymptotic result

Number of mono-source DOAGs

C
Dy ~ —e"in-1l

n—oo \/ﬁ

for ¢ ~ 0.30256 and where jm! = T],_, kL.

1 ‘ 4 6 7/3|5 ~ (n —1)! possible rows
2|4|3|5 1 ~ (n —2)! possible rows
3|5 412 ~ (n —3)! possible rows = in — 11
411|523 ~ (n — 4)! possible rows
3 1|2 etc

16

Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

17

Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

17

Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

[6[1] [s] [2]4] [3] = [e[1]s]2]sa]a]x] [| |

17

Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

[6[1] [s] [2]4] [3] = [e[a]s[2]s]a]x| [[|

Variation = SEQ(Z) * SET(Z2)

17

Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
[6[1] [s[[2]a] [3] = [e[1[s[2]a]a]x[[| |
Variation = SEQ(Z) * SET(Z)

V(2) = (1-2)7'¢

17

Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

[6[1] [s] [2]4] [3] = [e[1][s[2]s]a]x] [[|

Variation = SEQ(Z) * SET(Z)
V(2) = (1-2)7 '
Vi = e-nl—o(1)

17

Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
[6[1] [s[[2]e] [3] = [e[1][s[2]a]a]x[[| |
Variation = SEQ(Z) * SET(Z)
V(2) = (1-2)7'e?
Vi = e-nl—o(1)

#{DOAG matrices} = #{collections of rows} < #{collections of variations}

17

Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
[6[1] [s[[2]e] [3] = [e[1][s[2]a]a]x[[| |
Variation = SEQ(Z) * SET(Z)
V(2) = (1-2)7'e?
Vi = e-nl—o(1)

#{DOAG matrices} = #{collections of rows} < #{collections of variations}

17

Proof sketch (2/3)

The plan: 1. Upper bound

2. Lower bound 3. Bootstrapping

{DOAG matrices} D

g

£

2l

(constraints are automatically satisfied)

Proof sketch (2/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
BT
=
{DOAG matrices} D 7&%_ (constraints are automatically satisfied)
7=

AT P12 7] = ve - vic

Proof sketch (2/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
BT
=
{DOAG matrices} D 7&%_ (constraints are automatically satisfied)
7=

#’75’?‘?\?\?\?\?\?\?\:vk—vM:e.k!.<1—%—o((k_11)!)>

Proof sketch (2/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

&

3
2l

{DOAG matrices} D A (constraints are automatically satisfied)

Proof sketch (2/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

&

3
2l

DOAG matrices} D A (constraints are automatically satisfied)
Z
7=

AT - - = ok (1= -0 ()

—1
Dn>e”‘1in—1!n1_[ujto 1 >e’7“m—1!é for some A > 0
= LU\"7x k_1))) = n

Proof sketch (2'/3)

The plan: 1. Upper bound 2. Better lower bound 3. Bootstrapping

mad n Mo i BEL
{DOAG matrices} D o + L+ =+

19

Proof sketch (2'/3)

The plan: 1. Upper bound 2. Better lower bound 3. Bootstrapping

= = A
¢ [1 [1

= i iz

{DOAG matrices} D =+ =1+ =+

19

Proof sketch (2'/3)

The plan: 1. Upper bound 2. Better lower bound 3. Bootstrapping

(AT (T, (AT,
o ;«é;«; T L
{DOAG matrices} D 7&%% + ¢¥~ + 7é5r +
7 Z 7
D, > A"~ In(n) &1 1)
n
D A" In(n
Pn - L () -~ 'Dn S 1
en=1in—1l n

19

Proof sketch (3/3)

The plan: 1. Upper bound 2" Better lower bound 3. Bootstrapping

NEZ Z
7z N 0
e H+Hp "+ HHE +

{DOAG matrices} Dn_1LC Dn_2: Dp_3

LN L
LI L1l

20

Proof sketch (3/3)

The plan: 1. Upper bound 2" Better lower bound 3. Bootstrapping

NEZ Z
7z N 0
e H+Hp "+ HHE +

{DOAG matrices} Dn_1LC Dn_2: Dp_3

LN L
LI L1l

1
Dn = (an1 - anZ)Dn% =+ i(vn% —2Vp_y + an3)an3Dn72 +ee

20

Proof sketch (3/3)

The plan: 1. Upper bound 2" Better lower bound 3. Bootstrapping

NEA =
=Z N [0
S T +
DOAG matrices} = D, 10 + ’
{ } miin Pn-a D3
(11 RN

1
Dn = (an1 - anZ)Dn% =+ i(vn% —2Vp_y + an3)an3Dn72 +ee

o= (1=555) Pt e (- * o) Pt

20

Proof sketch (3/3)

The plan: 1. Upper bound 2" Better lower bound 3. Bootstrapping

NEA =
=Z N [0
S T +
DOAG matrices} = D, 10 + ’
{ } miin Pn-a D3
(11 RN

1
Dn = (an1 - anZ)Dn% =+ i(vn% —2Vp_y + an3)an3Dn72 +ee

1 1 2
P”:<1_?—’1')P”—‘+ - n_2),) "t

'DnNPn—1

20

Proof sketch (3/3)

The plan: 1. Upper bound 2" Better lower bound 3. Bootstrapping

NEA =
=Z N [0
S T +
DOAG matrices} = D, 10 + ’
{ } miin Pn-a D3
(11 RN

1
Dn = (an1 - anZ)Dn% =+ i(vn% —2Vp_y + an3)an3Dn72 +ee

'DnNPn—1

20

Proof sketch (3/3)

The plan: 1. Upper bound 2" Better lower bound 3. Bootstrapping

NEA =
=Z N [0
S T +
DOAG matrices} = D, 10 + ’
{ } miin Pn-a D3
(11 RN

1
Dn = (an1 - anZ)Dn% =+ i(vn% —2Vp_y + an3)an3Dn72 +ee

20

Proof sketch (3/3)

The plan: 1. Upper bound 2" Better lower bound 3. Bootstrapping

NEA =
=Z N [0
S T +
DOAG matrices} = D, 10 + ’
{ } miin Pn-a D3
(11 RN

1
Dn = (an1 - anZ)Dn% =+ i(vn% —2Vp_y + an3)an3Dn72 +ee

1

NN

20

Random sampling again!

Corollary
Dp
#{collections of variations of length 1,2,...,n — 1}

c-n

[N

21

Random sampling again!

Corollary
Dn c-n-
#{collections of variations of length 1,2,...,n — 1}

NI —

Rejection sampling: draw collections of variations until they correspond to a
valid DOAG matrix.

21

Random sampling again!

Corollary
Dn c-n-
#{collections of variations of length 1,2,...,n — 1}

NI —

Rejection sampling: draw collections of variations until they correspond to a
valid DOAG matrix.

(Naive) complexity: #rejections x Cost(one generation)

21

Random sampling again!

Corollary
Dp
#{collections of variations of length 1,2,...,n — 1}

c-n

NI —

Rejection sampling: draw collections of variations until they correspond to a
valid DOAG matrix.

(Naive) complexity: #rejections x Cost(one generation)

Generating one variation: ~ nlog,(n) random bits.

21

Random sampling again!

Corollary

D
L c-n

#{collections of variations of length 1,2,...,n — 1} -

NI —

Rejection sampling: draw collections of variations until they correspond to a
valid DOAG matrix.

(Naive) complexity: O(v/n - n*In(n)) random bits

Generating one variation: ~ nlog,(n) random bits.

21

Random sampling again!

Corollary
Dp
#{collections of variations of length 1,2,...,n — 1}

c-n

NI —

Rejection sampling: draw collections of variations until they correspond to a
valid DOAG matrix.

(Naive) complexity: O(v/n - n*In(n)) random bits
Generating one variation: ~ nlog,(n) random bits.

Better complexity:
Cost(one full generation) + #rejections x Cost(one failed generation)
2

= % log,(n) + O(v/n - Cost(one failed generation))

21

Early rejection

i
207
?

22

Early rejection

i
207
?

22

Early rejection

i
207
?

22

Early rejection

i
207
?

22

Early rejection

i
207
?

22

Early rejection

i
207
?

22

Early rejection

i
207
?

22

Early rejection

2022
7|7
?

22

Early rejection

i
207
?

22

Early rejection

i
207
?

22

Early rejection

2022
7|7
?

22

Early rejection

2|72 22?2 |?2[2|?2|?2|°?

2022
7|7
?

22

Early rejection

2|72 22?2 |?2[2|?2|?2|°?

2022
7|7
?

22

Early rejection

2|72 22?2 |?2[2|?2|?2|°?

2022
7|7
?

22

Early rejection

2|72 22?2 |?2[2|?2|?2|°?

2022
7|7
?

22

Early rejection

i
207
?

22

Early rejection

i
207
?

22

Early rejection

(2?2 (?2(?2 2?2?77

22

Early rejection

(2?2 (?2(?2 2?2?77

2
Complexity = O(nIn(n)) Total complexity = % log,(n) + O(v/n - nin(n))

22

- Law of the number of edges?

23

- Law of the number of edges?
- Multigraph equivalent: DOAMG
- Identical to compacted plane trees
- We have to count by edges
- Simpler recurrence relation
- No asymptotics (yet)
- Collaborations with Alfredo Viola (Montevideo) and Michael Wallner (TU Wien)

23

> New model: DOAG
> New way of counting
> Control over the number of edges
> When forgetting edges:
> (Fun?) asymptotic results
> Optimal uniform sampler

<I> https://github.com/Kerl13/randdag
® https://wkerl.me
&< martin.pepin@lipn.univ-parisi3.fr

Al

https://github.com/Kerl13/randdag
https://wkerl.me
mailto:martin.pepin@lipn.univ-paris13.fr

References |

[EFW21] Andrew Elvey Price, Wenjie Fang, and Michael Wallner. “Compacted
binary trees admit a stretched exponential”. In: Journal of
Combinatorial Theory, Series A 177 (2021), page 105306. ISSN:
0097-3165. DOI: https://doi.org/10.1016/5.jcta.2020.105306.
URL: https://www.sciencedirect.com/science/article/pii/
S0097316520300984.

[Ges96] Ira Martin Gessel. “Counting acyclic digraphs by sources and sinks”.
In: Discrete Mathematics 160.1 (1996), pages 253-258. ISSN: 0012-365X.

[GGKW20] Antoine Genitrini et al. “Asymptotic enumeration of compacted
binary trees of bounded right height”. In: Journal of Combinatorial
Theory, Series A 172 (2020), page 105177. 1SSN: 0097-3165. DO
https://doi.org/10.1016/75.jcta.2019.105177.

*1

https://doi.org/https://doi.org/10.1016/j.jcta.2020.105306
https://www.sciencedirect.com/science/article/pii/S0097316520300984
https://www.sciencedirect.com/science/article/pii/S0097316520300984
https://doi.org/https://doi.org/10.1016/j.jcta.2019.105177

References Il

[GPV21] Antoine Genitrini, Martin Pépin, and Alfredo Viola. “Unlabelled
ordered DAGs and labelled DAGs: constructive enumeration and
uniform random sampling”. In: XI Latin and American Algorithms,
Graphs and Optimization Symposium. Eslevier. 2021.

[KM15] Jack Kuipers and Giusi Moffa. “Uniform random generation of large
acyclic digraphs”. In: Statistics and Computing 25.2 (2015),
pages 227-242.

[MDBO1] Guy Melancon, Isabelle Dutour, and Mireille Bousquet-Mélou.
“Random Generation of Directed Acyclic Graphs”. In: Electronic
Notes in Discrete Mathematics 10 (2001), pages 202-207. DOI:
10.1016/S1571-0653 (04) 00394-4. URL:
https://doi.org/10.1016/S1571-0653(04) 00394-4.

*2

https://doi.org/10.1016/S1571-0653(04)00394-4
https://doi.org/10.1016/S1571-0653(04)00394-4

References IlI

[Rob73] Robert William Robinson. “Counting labeled acyclic digraphs”. In:
New Directions in the Theory of Graphs (1973), pages 239-273.

[Rob77] Robert William Robinson. “Counting unlabeled acyclic digraphs”. In:
Combinatorial Mathematics V. Lecture Notes in Mathematics.
Springer, 1977, pages 28-43.

*3

	Background
	Directed Ordered Acyclic Graphs
	Labelled DAGs
	Asymptotic analysis
	Conclusion
	Appendix
	References

