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Directed Acyclic Graphs
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Directed Acyclic Graphs

\Y%

A finite set of vertices Veg. {1,2,...,n};

\Y

a set of directed edges EC V x V,

\%

no cycles: vy — vp — -+ — Vv = V4.

\Y%

If considered up to relabelling:
unlabelled DAGs

1/17



Directed Acyclic Graphs

source
> A finite set of vertices Veg. {1,2,...,n};
> a set of directed edges EC V x V;
> nocycles:vi - v, = - > v, = V.
> |f considered up to relabelling:
unlabelled DAGs
sink
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State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]
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State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]  Problems:

> Counting by number of edges: [Ges96] e e Inclusion-exclusion
> Uniform sampling: [MDBO1], [KM15] @ e No or little control
Unlabelled DAGs: over the number of
edges

> Counting by vertices and
sources: [Rob77] e
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Still missing

> Finer control over the number of edges?

> Sampling of unlabelled structures?
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Directed Ordered Acyclic Graphs



A new kind of DAG

Directed Ordered Acyclic Graphs (DOAGS)

DOAG = Unlabelled DAG
+ a total order on the outgoing edges of each vertex
+only one sink and one source
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. . . struct vertex {
N Real-life implementations of . int S dacracs

DAGs have an ordering; , struct vertex rout_edges;
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N Real-life implementations of
DAGs have an ordering;

N The memory layout of trees with
hash-consing have an ordering;

struct vertex {
int out_degree;
struct vertex xout_edges;
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struct vertex {

N Real-life implementations of . int out_degree;
DAGs have an Ordering. struct vertex xout_edges;
' it
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> Models unlabelled objects.
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Recursive decomposition: multi-source DOAGs

Idea: remove the source and see what is left.
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Recursive decomposition: multi-source DOAGs

edges to :
s edges to internal vertices;

S <F
( )s! ways to arrange the two sets of edges;

Dn.mr = #DOAGS with n vertices, m edges, k sources

S+ n—~k—
- Z Dn—1,m—5—q,k—1+q( s q)( S q)sl

s+q>0
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Complexity of the counting

Dimkr = Lim=onk=1}

Dnmpr=0 when kR <0
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s+q>0
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Complexity of the counting

D1k = Lim=onr=1}

Dpmr=0 when kR <0
S+ n—Rk-—
Die = . Dn_1,m_5_q,k_1+q( . q) < . q)s! when n > 1
s+q>0
Complexity
Computing D m for all n,k < N .and m < M takes O(N“M) arithmetic
operations.

In practice we reach M = 400, N = M + 1.
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Random sampling

Do the same, but backwards.
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Random sampling
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Do the same, but backwards.
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Random sampling

Do the same, but backwards.

. Select (s, g) with
probability Dn-tms-ai1ea (1) (0 757)st.

Dn,m,k !

. Sample a DOAG,_1,m—s—qk—1+q recursively;

. We already know the g largest sources;
. Choose s internal vertices;
. Connect them to the new sources.
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Random sampling

How to select s and g?
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10/17



Random sampling

How to select s and g?
1. Pick an x ~ UNIF([0; Dpme — 1]);

2. compute the partial sum of the terms Dy_1m—s—qr—11q (7% ("5 9)s!;

10/17



Random sampling

How to select s and g?

1. Pick an x ~ UNIF([0; Dpme — 1]);
2. compute the partial sum of the terms Dy_1m—s—qr—11q (7% ("5 9)s!;

3. stop as soon as the sum becomes > x;

10/17



Random sampling

How to select s and g?

1. Pick an x ~ UNIF([0; Dpme — 1]);
2. compute the partial sum of the terms Dy_1m—s—qr—11q (7% ("5 9)s!;

3. stop as soon as the sum becomes > x;
4. (bonus) sum in the lexicographic order for (s + g, s).
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Complexity of the sampling algorithm

> Selecting s and g: O((s + q)°) arithmetic operations;
> the rest is cheap.
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Complexity of the sampling algorithm

> Selecting s and g: O((s + q)°) arithmetic operations;
> the rest is cheap.

Complexity
Sampling a DOAG uniformly at random costs O(}", d2) arithmetic

operations where v ranges over the vertices of the output and d, is the
out-degree of v.

In practice it takes a few milliseconds.
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Extensions



Bounded degree sampling

What if we want DOAGs with maximum out-degree d?
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Bounded degree sampling

What if we want DOAGs with maximum out-degree d?

s+qg\/n—kR—qg
Dn,m,k: Z Dn—1,m—s—q,k—1+q< S )( S >S!

0<5+q

12/17



Bounded degree sampling

What if we want DOAGs with maximum out-degree d?

(d (d) S+q n—~kR-— 0]
Dn,m,k - Z Dn1,msq,k1+q( S ) ( § s!

0<s+g<d

12/17



Bounded degree sampling

What if we want DOAGs with maximum out-degree d?

(d (d) S+q n—~kR-— 0]
Dn,m,k - Z Dn1,msq,k1+q( S ) ( § s!

0<s+g<d

> Counting: O(N?d*) arithmetic operations.

12/17



Bounded degree sampling

What if we want DOAGs with maximum out-degree d?

(d (d) S+q n—~kR-— 0]
Dn,m,k - Z Dn1,msq,k1+q( S ) ( § s!

0<s+g<d

> Counting: O(N?d*) arithmetic operations.
> Sampling O(Nd?) arithmetic operations.

12/17



Bounded degree sampling

What if we want DOAGs with maximum out-degree d?
(d (d) S+q n—~Rk-— 0]
Dn,m,k - Z Dn1,msq,k1+q( e ) ( S S
0<s+g<d

> Counting: O(N?d*) arithmetic operations.
> Sampling O(Nd?) arithmetic operations.
> |n practice we reached m = 1500 with d =2 and m = 1000 with d = 10.
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Your next favourite wallpaper

DOAG
1000 edges

and with out
bounded by d

degree
10.
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Back to labelled DAGs

The classical way to count is by a layer-by-layer approach.
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> How to count by number of edges?

> How to enforce connectivity (e.g. with
. one sink and one source)?
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The classical way to count is by a layer-by-layer approach.
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> How to count by number of edges?

> How to enforce connectivity (e.g. with
. one sink and one source)?

e - Use our approach!
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Vertex-by-vertex decomposition of labelled DAGs

Idea: mark one source, and remove it.

Anmk = #DAGs (one sink, k sources)
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Vertex-by-vertex decomposition of labelled DAGs

Idea: mark one source, and remove it.

Anmk = #DAGs (one sink, k sources)
k- An,m,k -

R—1+ n—qg-—~R
n- Z An—1,m—s—q,k—1+q( q q) ( z )

s+q>0
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Conclusion and future work
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Initial questions:

> Finer control over the number of edges?
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Conclusion

Initial questions:

> Finer control over the number of edges? v/
> Sampling of unlabelled structures? = We made one step forward

We presented:

> a new model of DAGs: DOAGS;
> a new way of counting.
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\%

Can we get rid of the one-sink-one-source constraint while retaining
weak connectivity?

\%

Is there a symbolic method operator hidden behind the
vertex-by-vertex decomposition?

\Y%

Asymptotics?

\Y%

Can we get closer to sampling regular unlabelled DAGs?
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Thank you for your attention!
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